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FOREWORD

. The typical few-of-a-kind nature of NASA systems has made reliability a premium

.even on the initial items delivered in a program. Reliability defined and treated
‘on the basis of percentage of items operating successfully has much less meaning

‘than when larger sample sizes are available as in military and commerical products.

Reliability thus becomes based more on engineering confidence that the item will work

as intended. The key to reliability is thus good engineering-—designing reliability

‘into the system and engineering to prevent degradation of the designed-in reliability

trom fabrication, testing and operatiomn.

This PRACTICAL RELIABILITY series of reports is addressed to the typical engineer
to aid his comprehension of practical problems in engineering for reliability. 1In
these reports the intent is to present fundamental concepts on a particular subject
in an interesting, mainly narrative form and make the reader aware of practical
problems in applying them. There is little emphasis on describing procedures and
how to implement them. Thus there is liberal use of references for both background

theory and cookbook procedures. The present coverage is limited to five subject areas:

Vol. I. - Parameter Variation Analysis describes the techniques for treating

the effect of system parameters on performance, reliability, and other figures-

of-merit.

Vol. II, — Computation considers the digital computer and where and how it

can be used to aid various reliability tasks.

Vol. III. — Testing describes the basic approaches to testing and emphasizes

the practical considerations and the applications to reliability.

Vol. TV. - Prediction presents mathematical methods and analysis approaches

for religbility prediction and includes some methods not generally covered

in texts and handbooks.

Vol. V. - Parts reviews the processes and procedures required to obtain and

apply parts which will perform their functions adequately.

These reports were prepared by the Research Triangle Institute, Research Triangle
Park, North Carolina 27709 under NASA Contract NASw-1448. The contract was adminis-
tered under' the technical direction of the Office of Reliability and Quality
Assurance, NASA Headquarters, Washington, D. C. 20546 with Dr. John E. Condon,
Director, as technical contract monitor. The contract effort was performed jointly
by personnel from both the Statistics Research and the Engineering and Environmental
Sciences Divisions. Dr. R. M. Burger was technical director with W. S. Thompson

serving as project leader.
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This volume is Vol. I. - Parameter Variation Analysis of the series. There has
been a notable increase in interest on this subject due to higher precision require-
ments for system operation and optimization of system figures-of-merit such as
performance, reliability, and effectiveness. Dr. R. A. Evans is the principal

author of this report.
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ABSTRACT

Concepts such as model, randomness, statistical ignorance, and statistical

independerice are explored and explained. The effects of variations of parameters

-can be evaluated by changing components in a physical model or by creating a con-

ceptual/mathematical model of the system and then analyzing it. There are only a

"very few basic techniques for analysis of mathematical models and these are rather

extensively treated. The uses to which these models and their amalyses may be put
are many and only a few of these are treated such as sensitivity and worst-case
analyses, and calculation where extreme extrapolation is necessary. There is a
brief discussion of the sources and uses of variations data both in purchased and
in manufactured items. A series of appendices gives some mathematical details,

thus saving constant reference to other books.
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1. Introduction

As reliability has become a more formalized activity, the body of knowledge
which it includes has expanded and become compartmentalized. The particular subset
called "parameter variations analysis" is described literally by the title. It is
the analysis of the changes in parameter values (figures of merit, performance, cost,
reliability, electronic properties, mechanical properties, etc.) when some of them
are varied, some are constrained, and the rest are allowed to change as necessary.
It may take place at any systems level from raw materials to supersystems. The
tools are physical models and mathematical equations.

This report is a tutorial exposition on the state—of-the-art of parameter
variation analysis. The emphasis is heavily on the practical nature of parameter
variations analysis and its usefulness. This report is intended to give the engineer
an overall view of the situation and to give him practical suggestions about utiliz-
ing parameter variations analysis. It presumes the reader has knowledge at least
equivalent to a B.S. in Engineering although much of it may have been forgotten. It
is not a cookbook in the ordinary sense of the term, even though there are formulas
in it. This report is a vehicle to aid understanding and is organized with that
view in mind.

Chapter 2 discusses in detail some of the concepts which are important in
parameter variations analysis. Chapter 3 is a fairly brief listing of the uses
of physical models. Chapter 4 is concerned with the creation of mathematical models
of systems. The techniques for analyzing these models are expounded at length in
Chapter 5 which is subdivided according to the importance of probabilistic consid-
erations in the models. It emphasizes the essential fewness of the techniques for
analysis. Chapter 6 points out the diversity of uses of mathematical models as
opposed to the techniques for the analysis given in Chapter 5. Chapter 7 is a
brief discussion of the sources and uses of data for these equations. The report
is concluded with the usual summary and conclusions.

The ideas of a conceptual model and of models versus reality are important to
the point of view pervading much of this report. Therefore Sec. 2.1 (models) should

be read carefully.



2. Concepts
There are several concepts which are used in this volume, or in connection with
‘this subject, and about which there is some confusion. It is the purpose of this

bhapfer to discuss those concepts and give them fruitful meanings.

2.1 Model

The idea of a conceptual model is adapted from the idea of a physical model such
as a model car or the model of a building. In a physical model, the characteristics
of importance to us are reproduced quite well. 1In a model car these might be pro-
portions, shape, and color. The ones of little or no importance are not usually
reproduced at all; e.g., there might be no motive power and the tires may not be
pneumatic. The "inbetweens" receive indifferent treatment; e.g., the windows may
be transparent and the presence of seats inside may be inconsequential. The physical
model is an abstracting of something important from the real world; it is an imitation.

A conceptual model is analogous to a physical model. Since everything in the uni-
verse probably affects everything else to some degree, however slightly, any exact
treatment would be hopelessly complicated. Therefore we decide how we will look at
the situation and make a set of assumptions (both explicit and implicit) about what
we will ignore and what we will include in our conceptual model. It is usual to
state only a few things that are being ignored and to make the blanket assumption
that everything else which is not explicitly mentioned is also to be ignored. By its
very nature, a conceptual model is incomplete: it ignores some things and describes
other things in an approximate fashion.

After having made a set of assumptions for our conceptual model, we operate on
those assumptions with mathematics and logic; we analyze them by any means at our
disposal. The assumptions together with the current results of the analysis are our
model. Unpleasant situations sometimes occur while developing the logical implications
of a set of assumptions - we do not like the results for one reason or another - they
do not seem to fit, they appear to be inconsistent with our beliefs, etc. Under these
circumstances we have two rational choices:

(1) Change our beliefs about the way the world is if we are convinced that the

set of assumptions are very realistic, or

(2) Go back and modify the assumptions so that their logical implications do,

in fact, fit our beliefs about the world.
The creation of a conceptual model is a circular, often haphazard, process wherein
ideas come from everywhere, get analyzed, tested, compared, junked, and accepted.

Some good ideas usually filter through the process.




The completely logical structure of a conceptual model is developed after an
idea 1is successful. Some of the ramifications are so complex that it takes much cal-
culation to find out what they are.* Sometimes we refer to one equation or curve as
the model, but this is just speaking loosely.

If a model fits the real world well enough for our purposes at the moment, it
is an adequate model for the moment. Adequacy depends not only on the model. and the
world themselves, but on our needs and desires - not to mention our ability to compare
the model with the world. Thus, models are not right or wrong but are only more or
less adequate. Of course, some models are so woefully inadequate for anything that
we class them as wrong. Others are so generally adequate that we feel they correspond
very closely to reality.

In this latter case, however, it is important to distinguish between a definition
and a model; the reason some '"models" do so well is that they are, in fact, definitions
of one of the quantities or concepts involved. For example, "An unbiased coin toss
will have a 50-50 chance of heads or tails" is not as assertion about the world, but

a definition of unbiased-coin-toss."

If it does not come out 50-50, we do not change
our ideas about what unbiased coin tosses do, we search for the bias in the coin toss.
An engineering model is often mathematical in nature and the same formalism
will describe several different situations. For example, the equations which describe

resistance-inductance-capacitance networks will also describe mass-spring-dashpot
systems. Furthermore there is more than one analogy between the two that can be made.
It is important to keep the distinction between the mathematics itself (which is quite
general and completely impersonal) and what we have it represent in an engineering
sense. The mathematics never lie, but often they do not apply.

In some cases we can not or will not write down equations but rather we discuss
the system at the level of phenomena. This is called a qualitative (phenomenological)
model.

The term "probabilistic model" appears in the literature (but not here). It
is generally a special case of a mathematical model wherein the relationships are
between probabilities or between random variables.

We never analyze the real world, we can only analyze a conceptual model of the

real world.

2.2 Randomness
Randomness is a rather basic concept; it is difficult to define without being

directly circular. The best we can do is talk about it enough to make sure that we

Thus the science of simulation.



all have similar feelings for it. First, we can say that if the mathematical theory
of probability applies to the events or variables then those events or variables

are random. Next we can say, from an engineering viewpoint, that if the uncertainty
in the events or variables is appreciable then they are random. There is no distinction
between cause-and-effect and randomness. Outside of concepts where quantum-mechanics
is necessary - and this never happens in Reliability--a cause-and-effect relationship
is presumed to hold for all physical events. But often we do not wish to go into
details, or virtually cannot as in statistical mechanics, and so we use a statistical
description of what happens. Even though a parameter may have a specific value we
may assign a number (a probability) to our degree of belief about the possible values
of that parameter. If we are applying probability in connection with something, it
is, by definition, a random event or a random variable, regardless of any other
considerations.

It should be emphasized that the theory of probability is not limited in its
application to the relative frequencies of events any more than a particular differ-
ential equation is limited to an electronic circuit vs. a mechanical system. One
of the early applications of the theory of probability, and one of increasing activity
today, is to use probability as a measure of degree-—of-belief about events or param-
eters. This is sometimes called a Bayesian approach. Some articles would have you
believe you must adopt either the degree-of-belief (''subjective") or the relative-
frequency ("objective") approach to probability and that you cannot use both. This
is not so, although it is wise to be extremely cautious about mixing them; you can
use either one when it suits your purpose. Even though the mathematical theory of
probability is quite useful when discussing random events and variables, it is sometimes
very difficult, if not virtually impossible, to associate a particular probability
with certain kinds of knowledge.

There is confusion in the literature about the meaning of '"pure chance," "purely
at random," and similar phrases. They are often used when the hazard rate (for time
to failure) is constant or when the number of failures in a fixed time interval has
a Poisson distribution. This is poor practice since it tries to impart a degree to
randomness. But one would not wish to say that a Normal (Gaussian) variable was more
random than another because its variance (or standard deviation) was larger. It is
better to compare descriptors such as variance or coefficient of variation, or to
describe the probability density function (pdf) directly; e.g., 'the pdf is uniform,
i.e. constant, over the range 0 < x < a." For another example, rather than saying
the distribution of heads and tails on a tossed coin is given by pure chance, it would
be better to say that the probability of heads or tails for this kind of toss is one-
half.




There is a very close link here between randomness and uncertainty. Events are
not random in themselves, but only relative to our needs, desires, and ability to
@easure and predict. For example, suppose some rods are going to be hammered into
?he ground and used as markers. If their lengths are all 18" + 1," we might say
Ehey are all the same, the length is not uncertain; on the other hand, if these rods
are to mate with a cast metal part, their length is quite uncertain and we would treét

the length as a random variable.

2.3 Parameter

In mathematics one sometimes distinguishes between parameters and variables.
Parameters are usually held constant during the course of an analysis and variables
are allowed to change. This naming implies some knowledge of how the values of each
will behave. When creating a model for physical systems such prior knowledge often
does not exist or is completely arbitrary. For example, the dimensions of a bar or
resistance of a resistor might be fixed or changeable depending on the nature of the
analysis.

In order to avoid the implications of fixed and changeable, only the name param-
eter will be used for describing all quantities to which are assigned an algebraic
designation or letter. That is, it includes both the parameters and the variables
of mathematics ~ any attribute of a system, part, component, etc., to which numerical
values can be assigned, and to which no permanent numerical value is given, is called
a parameter. The term is intended to be very general: it covers inputs, outputs,
properties of materials, environmental descriptions, forces, deflections, strengths,
figures—-of-merit, etc. On occasion in discussing statistical distributions it is
convenient to use the word parameter and variable as is customary in statistics and
it is done in the text where it will avoid confusion. For example, the mean (u) and
variance (02) of a Gaussian variable are referred to as parameters. It is customary
to denote the parameters in statistical distributions by Greek letters.

This procedure, adopted here, is completely arbitrary, but is less cumbersome
than using both words (parameter/variable) where the meaning would not otherwise be

clear.

2.4 Reversible vs. Nonreversible

It is convenient in engineering to be able to use these terms without implying
the thermodynamic definitions. A process is reversible if the system can and may be
prought back to its original state by traversing backwards through the subsequent
states; otherwise it is nonreversible. Implicit in this definition are several con-
cepts:

(1) The system is described by listing its important parameters. Only these need



&

k'S

be brought back to their original values. There will be some parameters
which, while not important, are not ignorable either. They should be brought
back closely enough to their original values. '

(2) There is some feasibility and desirability implied besides possibility.

The terms are a matter of degree, not a black vs. white situation; what is
reversible in one context may be nonreversible in another.

An important case is one where a dependent variable is a function of several
independent variables, none of which is time. If the independent variables represent
things you do to an element, such as change its temperature, and the dependent variable
represents a measurement that is made, such as resistance or length, the process is
reversible. The word function is used in its strict sense, viz., it is single~valued
and defined everywhere in the range.

Often there is hysteresis present. If it is small enough, the process is
reversible. If it is too large to ignore, then the process is not reversible,
although the term nonreversible may be too harsh for it. Do not be confused by the

necessity of applying a label to the process — just describe it as well as you can.

2.5 Drift and Degradation
These terms are applied to mnonreversible processes only, but the changes need not
be monotonic. If most of the system parameters and all the external, ambient conditions
are at their original values* and a few are not, those few are said to have drifted.
(This assumes there is no reversible relationship between those few.) There is usually
some implication that the process was a slow one (compared to the time scale of concern) .
If the drift was bad, and this is a value judgment, it is called degradation.
The judgment on a particular drift may well be different at different occasions. Thus
a 1% change in resistance or in deflection of a beam is not good/bad in itself, but

only in relation to other circumstances.

2.6 Performance

This word has several kinds of uses. It generally refers to some figure-of-
merit (FOM) of an element or item. A system often has several measures of performance
and just as often, there must be tradeoffs between them. This term will rarely be

used in this volume. Parameter is used to be more general, FOM to be more specific.

* .
This refers only to the ones we are measuring or controlling, and even then, only
to the degree we are doing it. Thus if ambient temperature is ignored, we would call
the results of a temperature change "drift".



2.7 TItem or Element
The terms "item" or "element" are used in a general sense since they have not
yet been preempted by anyone to refer to a specific size or group. It may be a part,

component, subsystem, system, or collection of systems. It may be as large as SAGE

or as small as an integrated diode.

2.8 Figure-of-Merit

A figure-of-merit (FOM) is just what the name literally implies. It is a figure
by means of which the merit of an item may be determined and by which items may be
compared and ranked. The FOM is generally presumed to be directly related to values
upon which decisions are made. Reliability, signal-to-noise ratio, strength-to-weight
ratio, and gain-bandwidth are all examples of FOM's. An FOM is a parameter and equatiomns
can be written showing its relationship to system makeup and to other FOM's. Many
measures of performance can as well be called FOM's since the merit of systems is
judged by performance among other things.

The FOM need not be dimensionless although many are. Some are normalized to
be perfect for FOM = 1 and worthless at FOM = 0. This is all a matter of taste and

convenience.

2.9 Statistical Ignorance

While an engineer may refer loosely to his knowledge on a subject as 'complete
ignorance'" and be reasonably satisified that he knows what he means, it is difficult
to quantify this state of complete ignorance. In fact, almost any attempt to quantify
it has logical implications which appear to be contradictory. Statisticians have
been concerned and argumentative about quantifying ignorance since the beginnings
of formalized probability theory. It is wise to remember that we are dealing in abstrac-
tions from the real world, i.e., conceptual models. 1If any of the logical implications
of a set of assumptions appear to contradict what we think we know, we have several
choices, among which are:

(1) to change our idea of what we think we know; i.e., we feel we were mistaken,

(2) to go back and change some of the assumptions so that what we derive from

them is consistent with our observations of the world.

In the early development of a conceptual model this latter course is most often followed.

Another situation of relevance occurs when the mathematical formalisms used to
represent different models are the same. While in some ways we can then say the
models are equivalent, we must be careful not to call the models the same because they
are, in fact, talking about different things. For example, the resistance-inductance-
capacitance equations can turn out to be exactly the same* as some mass-spring-dashpot

equations, but the models are of different things.

There is not a unique one-to-one correspondence between the twoj several analogies
exist.



In the field of probability the same mathematical theory is used to describe at
least two different situations which, while related, are certainly not the same things.
The first is relative frequencies of events; gambling theory is based upon it and
much of the theory of probability is shown to be quite applicable to this situation.

Be careful though about nominal vs. actual situations; loaded dice and fixed one-arm
bandits are not entirely unknown in the real world.

The second use of the mathematical theory of probability is to describe what is
known as subjective probability which refers to our feelings on matters and to the
the way in which we might place bets.* In cases where there is some overlap of these
two, the prudent man will have his subjective probabilities close to the relative
frequencies. The mathematical theory of probability does not have to refer to one
or the other of these two any more than a second-order linear differential-equation
has to refer to either the electrical or the mechanical system. It can equally well
describe both or neither.

One can avoid philosophic arguments about what probability really is by asserting
that he is using the mathematical theory of probability to represent a certain situation
and that it is believed to represent it adequately in the circumstances.

In the relative frequency model it is considered irrational in many situations
to assign a prior frequency distribution to a parameter.** For example, the true mean
strength of a set of colummns is what it is regardless of our state of knowledge
about it. On the other hand, my feelings about what that true mean strength is may
well have a probability distribution. If the subjective probability, which this latter
is called, is being used and represented by the mathematical notation for probability,
care should be used not to confuse it with relative frequency especially part-way
through a problem.

If a parameter is considered to have a probability distribution it often seems
desirable to represent the situation wherein the engineer says, "I don't know anything
about it; I am completely ignorant.'" Very often people have said, "In that event,

let me assume that all values of the parameter are equally likely.'" There is no intention

of discussing the moral uprightness of those who do so; but there are technical problems
*
with this approach. For example, consider the single parameter in pdf(t) = Aexp(-At).

Now suppose that:

* The fact that people are not always rational and have other peculiarities,

means that there are situations to which a rational conceptual model may not apply.

*k . s . . .
There are some situations in the relative frequency model wherein the parameter

can be legitimately considered a random variable, but it is not the intent here to
discuss when this happens.

***  This is the exponential distribution for time to failure.




(1) Probability refers to my degree of belief (i.e., it is '"subjective') about A.
(2) I wish to assert that I am completely ignorant about A prior to running an
experiment (but after giving it some thought).
(3) I choose the uniform distribution to describe this ignorance.
Several difficulties arise as the logical implications are considered:

(a) Obviously A is limited to non-negative real numbers,

(b) Since the interval is semi—infiﬁite, the pdf would not be defined. At
this point a quasi-pdf could be introduced as in Ref. 1. For an
engineer, it is more reasonable to pick an upper limit (Az) above
which pdf(A>A2) = 0 since no one really thinks a A of, say, 1010005ec—1

is realistic for any equipment worth considering.
(c) Likewise no one really expects this equipment to have a A < 10--1000}7r_l
(or some other small number) in the field. Therefore it is convenient

to pick a A, such that pdf(A < Al) = 0.

1
Now I no longer have the original assumptions. Instead, the third assumption
is modified to:
(3'") I choose the uniform distribution over the interval Al to A2 to describe
this ignorance, viz.,

0, A <

pdf(}) = a,0<>\l<)\<>\2

0, x > Az.

We can now reach the next difficulty:
(d) Consider pdf(1/A). It can be shown by probability theory that
2
ax’, Al < X< AZ
pd£(1/X)) =
0 , elsewhere .
Obviously if (3') describes complete ignorance, then (d) does not, because the pdf(1l/A)
is not a comstant in the non-zero region.
The easy way out of this problem (and the best way for engineers) is to eliminate

" represents my state of beliefs

the term complete-ignorance and say that "pdf(\) = a
rather than complete ignorance. If I do not mind my state of belief for 1/A being
what it turns out to be, then I am all right and there are no contradictions involved.
In this particular situation some have responded by asserting that pdf(lnA) = constant
(over some range) represents complete ignorance, but functions of A other than lni

can show the contradiction.

§
\‘
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Generally, the engineer is not as ignorant as he claims to be in comnection with
his beliefs about the parameters of a distribution. In fact, engineers have been
known to make the statement, "I am designing this equipment with a A = 1/3)\Spec in
order to pass the test.'" The engineer would not then wish to describe his subjective
probability for A with a uniform pdf, but rather ome that had at least a peak in it
near Aspec/3' The peak might be rather broad, but nevertheless it would be there.

A way to evaluate these probabilities is to guess how you would like to bet money,
write it down, evaluate some of the logical implications of that decision, and see

if you are willing to live with them.* If not, go back and modify the original choice,
etc., until you arrive at a model which you are willing to tolerate at least.

In general, no one really insists on complete ignorance (about anything he has
even heard of) to the extent that he will not back down from, "I wish to assign to
my feelings on the matter equal probability density anywhere from minus infinity to
plus infinity or, in the case of a number which is known to be non-negative, from
zero to infinity." When really pressed on the matter it turns out that his non-ignorance
will take shape. For example, he may be quite sure that a hazard rate (A) has
1/usec > X > 1/1000yrs; now he is talking about knowledge and belief rather than complete
ignorance.

When calculations are to be made from this prior distribution by using Bayes'
formula** it is wise to pick a function that is as tractable as possible. This is
not usually too difficult since many of the tractable functions have enough arbitrary
parameters and the general shape to give the loose fit desired to the rough prior
probabilities.

In the paradox of complete ignorance of parameters there is a striking resem-
blance to the paradox in the method of maximum entropy (this method was developed

by E. T. Jaynes and appears sporadically in the literature). It is easy enough to

* In trying to create a pdf for subjective prior probability and to evaluate the
tentative curves suppose that your malevolent brother-in-law were to use that curve to
establish odds, choose his own side, and bet money. Would you then wish to change the
curve so as not to lose your shirt and more to him? If so, change the curve to one
wherein you are willing to let someone try to take advantage of you by using it to
calculate odds for wagers and then by choosing his own side of the wager. Finally
you have really gotten your feelings on the matter quantified.

**  There is no controversy about Bayes' formula itself, there is only controversy

about the kinds of things people represent by mathematical probabilities when they
are using Bayes' formula. The formula is P(A|B)P(B) = P(B|A)P(A); see Sec. 2.10 for
notation.

10




use formally, but the results in practice are quite sensitive to the choice of para=
meter. Information (or its opposite, called entropy) is defined with respect to a
certain parameter and has the same limitations as complete ignorance does.

In summary, the terms "ignorance" or 'complete ignorance' are not accurately
descriptive and are likely to lead to contradictions when made quantitative. There-
fore it is better to try to describe the state of knowledge or belief by an appropri¥'

*
ate prior distribution.

2.10 Statistical Independence and Linear Correlation

Independence and correlation are very technical terms in the statistical litera-
ture. The confusion between them generally arises because even though they are defined
very precisely, the terms themselves do not readily convey their meanings to engineers.
For that reason, in these volumes on PRACTICAL RELIABILITY, they are generally written
as ''statistical independence'" and "linear correlation” which help to convey the tech-
nical meanings.

There are two definitions for statistical independence, one for discrete events
and the other for continuous probability density (pdf). Consider first the case of
discrete events. The notation adopted is as follows. ™

A, B, are identifiable events

A = not A.

P(A) = the probability that A occurs.

AB = BA = the joint event of both A and B.

P(A|B) = P(AB)/P(B) = probability of A when it is known that B did happen.

We are now ready to define statistical independence for discrete events:

If, and only if, A and B are statistically independent,

P(AB) = P(A) P(B), (1a)
P(A) = P(A|B) = P(A]B), (1b,c)
P(B) = P(B|A) = P(B|A). (1d,e)

Any one of these five equations can be used as the definition of statistical inde-
pendence; the others then follow from the laws of probability. Equation (la) is most
often used in the literature as the definition of statistical independence although
it is easier for many engineers to visualize (lb,c) or (ld,e) as a definition. It
should be noted also that if A is statistically independent of B, B must be statisti-

cally independent of A and so it is stated only that A and B are statistically

Prior means prior to the next experiment, not prior to careful thought about it.

** A summary of probability theory is given in an Appendix of Vol. IV - Prediction.
The symbol = means "is defined as" or "is identical to".
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indepeﬁdent. In the statistical literature, the modifier "statistically" is rarely,
if ever, used. But in engineering literature it should always be added (where it is
meant) so that there is no confusion with physical independence (physical independence
may be loosely thought of as lack of cause and effect).

If there are more than two events, the requirement for complete statsitical
independence of the events is usually written as P(AB...C) = P(A)+*P(B)---P(C).
Subsets of the events may be statistically independent without all of the events
being so; but if there is complete statistical independence for all events, then
the contents of any and all subsets are statistically independent.

Now consider the case where the parameters are continuous variables and have
continuous pdf's. Then the definition of statistical independence is: the continuous

random variables, Xys Xy, eee5 X, are statistically independent if, and only if,

pdf(xl, x cees xn) = pdf(xl) . pdf(xz) so pdf(xn). (2)

29
That is, the joint pdf is the product of the individual pdf's. If there are more
than two parameters, they can be pairwise statistically independent without being
all statistically independent. If they are all statistically independent any and all
subsets of the parameters are statistically independent.

It is oftentimes difficult to tell from physical reasoning whether two parameters
are statistically independent or not. Making the decision may require a fair amount
of study and effort. Statistical dependence is rarely discussed as such but events
or parameters are statistically dependent if they are not statistically independent.
There is no definition of the degree of statistical dependence,* although one could
probably define a complete statistical dependence as a situation wherein the conditional
probabilities are either 0 or 1.

Two parameters can easily be statistically dependent by virtue of their relation-
ship to a third parameter, the relationship between the first two obviously not being
one of cause and effect. Such may be the case, for example, between a telephone
system's working poorly and many people carrying umbrellas - both can be due to wet
weather.

Correlation is an ambiguous word to the engineer because it seems to mean the
same thing as statistical dependence. However, it is synonomous With linear correlation

as far as statistics is concerned. The linear correlation coefficient (p) is defined

* . L. . . .
If there is line€ar correlation, the correlation coefficients might be used for

this purpose.
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by the equation,
po,0, = covariance (xl, xz)

where the o, and'c2 are the standard deviations of Xy and Xys

covariance (xl, x2) = f f (xl - ul)(x2 - uz) pdf (xl, x2) dx1 dx

2’
variance (xi) = oi = f (xi - ui)2 pdf (xi) dxi.

Generalized product moments can be defined as in Ref. 2.

There are well known examples wherein the linear correlation coefficient is zero
(the variables are said to be uncorrelated) yet there is a direct functional relation-
ship between the two. A circle with its center at the origin is a good example.
The important thing to remember is that "correlated" means "linearly correlated"
and that two variables may well be linearly uncorrelated yet statistically dependent.
In the literature this statement would read, "the variables may well be uncorrelated yet
dependent." The latter can be most confusing to those not familiar with the ellipsis

being used.

2.11 Statistical Estimates*

All statistical estimates are, in their essence, point estimates; any interval
estimate consists of two point-estimates, one for each end point of the interval. For
example, one can use the sample mean (a statistic**) to estimate the true mean.

Then proceed as follows.

(1) From the pdf of the estimate of the mean (this estimate, remember, is a
statistic) calculate two end points for a particular confidence interval. Call them
EPU and EPL (for End Point Upper and End Point Lower).

(2) Each of these two end points - EPL and EPU - is a statistic since it it
calculated from sample data. For simplicity consider only one of them, e.g., EPL.

It has a pdf since it is a statistic; so calculate two end points for a confidence
interval for EPL. Call these two end points EPL (EPL) and EPU (EPL) for the lower and

upper end points respectively of the confidence interval for EPL.

* oA summary of fundamental concepts for statistical estimation is given in the
Appendix of Vol. III - Testing.

Tk A statistic is any result obtained by manipulating the data. Any statistic
which is derived in a known way for a random sample from a known population (regard-
less of the population size or sample size) has a pdf. It may not be known nor
expressable in a tractable form but it is there nevertheless. Just suppose there
are a very large number of replicas of the population and take, in a fixed way, a
random sample from each replica. Calculate the particular statistic for each sample.
In this example, calculate the sample mean--this is the statistic being used to
estimate the population mean. Now plot its distribution and there you have it—-the
pdf of the statistic under consideration.

13



(3) Each of these two end points - EPL(EPL) and EPU(EPL) - is a statistic since
it is calculated from sample data. For simplicity consider only one of them, e.g.,
EPU(EPL). It has a pdf since it is a statistic; so calculate two end points for.a
confidence interval for EPU(EPL).

(4) Note that (2) and (3) are alike except for the names of the end points. One
éan keep this up until he tires of it.

This procedure illustrates the fact that all estimates are, in their essence,
point estimates. As a matter of fact, it is virtually unheard of for anyone to go
beyond the first confidence interval. But many engineers have suggested confidence
on confidence...in derision because they objected in the first place to the unfamiliar

concept of confidence.
We shall limit the meaning of the word "estimate" here to a number derived from

the data (i.e., a statistic); but any number is an estimate no matter how poorly derived

or wildly conceived. It may be a particularly poor or misleading estimate; it may have
absolutely none of the good properties and all of the worst properties ever associated
with estimates; but it is nevertheless an estimate. Statisticians describe properties
of estimates by various terms such as efficient, sufficient, unbiased, maximum likeli-
hood, least squares, and minimum variance*. In some cases a particular estimate can
have many of these properties at once. In other cases the estimate cannot or does not
have them all. Most of these properties are considered good ones; e.g., an unbiased
estimator is better than a biased one (other things being equal). But the tradeoffs
between them are not clearly defined. Generally, an engineer will take the best he can
get without making tradeoffs. Then the uncertainty in the estimate is likely to be
larger than any modifications to be made by the tradeoffs. Thus it becomes a matter

of indifference, of personal preference, and of tractability as to which ones are used.

* These terms are not mutually exclusive.
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3. Physical Models and Their Uses

Physical models are variously called breadboards, mockups, etc.; it is not
difficult to put prototypes and preproduction samples in this class also. It is
convenient sometimes to include even the hardware itself as a special case of a

physical model.

3.1 Design Assistance

With a physical model, parameters can be changed by substituting or varying
the elements. There are several ways of doing this:

(1) Consider one particular element. Substitute other similar omes for it,
one at a time, and measure all the appropriate figures-of-merit each time (e.g.,
gain of an amplifier, audible noise level of an hydraulic system). The similar
elements may have unintentional differences or may be selected for thelr differences.
Watch out for correlations between parameters on the same element. Repeat this for
other elements. For a more efficient method, see (2) below.

(2) The above process can often be made more efficient if a statistical design
is used for substituting several parts at once. Some knowledge of the system is
required over and above that for (1) above if the increased efficiency is to be
realized, but interaction effects can be found this way that would likely be missed
in (1). There are factorial, partial factorial, Greek squares, Latin squares, nested
designs, ad nauseum. This is called Experimental Design and the literature is full
of explanations and detailed plans.* But beware of simplified explanations in the
engineering literature--they are often misleading. Professional help from statis-
ticians is virtually a must, but be sure you understand all the assumptions and
approximations in the experimental program layout and in the analysis. You need
not understand the details of the design or the analysis, just understand what the
statistician is assuming your system is like. If you abdicate your responsibility,
you may find that you have gotten worthless results—-correct from a statistics
point of view, but worthless from an engineering standpoint.

(3) As a special case of the above, several replications of the system may be
made instead of changing the elements in one system. Thus for example, 10 to 20
electronic cordwood modules, with appropriately chosen element values could be made
and tested. The results would be analyzed to show how the figures-of-merit depend
on the element parameters. Again, correlations between several parameters of a

given element must be watched; they complicate the analysis.

The Appendix of Vol. III--Testing in this series also discusses experimental
design.
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(4) On a breadboard or mockup, it is sometimes possible to replace some of
the elements with similar ones which are adjustable. For example, a variable speed
motor might replace a constant speed one and a rheostat might replace a resistor.
Schemes have been developed for simulating decay of gain in a transistor, etc. A
difficulty with this method is that the substituted element in itself is only a
partially adequate model for the actual element. In some ways it won't behave the
same way, e.g., the adjustable speed motor may have a different rotor inertia and
torque-speed curve and the rheostat has a different high frequency response. This
method can be especially useful in early design.

(5) Some commercial devices are available for automatically switching a "high"
and a "low" valued element in each of many positions for electronic breadboarded
circuits. This can be useful in worstcase design. The difficulties in (4) are

still present however.

Even though none of the above methods is always suitable and all have some bad
points, all are sometimes useful. Where a method has been systematically carried
out, the results can be profitably codified intc curves or equations. In some
cases, a statistical analysis of the results can be used to fit a linear, quadratic
or specialized surface to the data and to get an idea of the uncertainties involved
in prediction using these equations.

Care should be used in evaluating the results of tests on the physical model.
Very often, electrical characteristics only are measured while thermal and mechani-
cal considerations are ignored. 1In that event, special models must be constructed
to evaluate the thermal and mechanical properties. On occasion when this has been
done, the electrical behavior of the more apt model has changed from the more
simple-minded one and troubles begin. Other properties such as optical and radia-
tion may be important; then the model must be adequate for these as well.

One reason for testing a physical model is to check out a mathematical model.
In general, this measures the adequacy of the mathematical model rather than the
physical one although cases may arise wherein the physical model had unrealized
inadequacies. The blind insistence on one of these being true to the exclusion of

the other can cause lost time and money plus many ruffled tempers.

3.2 Production Assistance

In addition to being useful for design purposes, physical models are valuable
in determining the effects of variations in manufacturing processes, before the
system is finally put into production. Ordinarily the variations amalysis for

manufacturing purposes is much simpler than it is for design assistance but it
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nevertheless should be investigated for high reliability applications. Mockups
and. other physical models are one of the tools. If the quality of particular parts
is extremely sensitive to something in the manufacturing process, a design revision
may be called for. At other times just -a change in the type of manufacturing
process may be necessary. For example, the method of heat treating a steel part

may have to be changed.
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4, Creating Matheﬁatical Models

Before one can analyze a mathematical model of a system, one must first create
it. This is usually done by subdividing the system into subsystems that can be
readily handled. Very little new has been developed in the past decade or two for
the creation of models. But there have been tremendous advances in the ease with

which it can be done particularly by the use of computers.

4.1 Subdividing the System

The system must be subdivided for amalysis into elements which are small enough
to be handled both by the means at ones disposal and in the manner which makes it
most convenient to get answers. In some cases the entire system will be broken
down into elements for which equations describing the performance (or FOMjkof each
element are known by inspection. Such elements as resistors, capacitors, simple
tuned circuits, and class A amplifiers often have equivalent circuits which are
quite adequate.

There is no arbitrary rule on how small an element must be when subdividing a
system. It must be merely small enough so that it can be handled. For example,

a simple parallel tuned circuit comnsisting of a parallel resistor, inductor, and
capacitor could be treated as an element itself if the equation were available;

it could be broken down into two elements, e.g., the resistor and the LC combination;
or it could be subdivided into three elements. What is done depends on the user's
knowledge and the adequacy of his references, or on his computer program,

Remember that an equivalent circuit for a device is essentially a conceptual
model, and the equations for it are implied (in the mathematical or logical sense)
by the equivalent circuit. In fact, the symbols we use have two separate functions:

(1) to represent the physical part, or

(2) to represent the equation for the part's operation.

Most equivalent circuits are valid only over a range of the variables or para-
meters and care must be exercised in using them that the parameters do not exceed
the allowed range. For example the small-signal equivalent-circuit for tramsistors
is not generally valid for an oscillator circuit. Mechanical springs may have a
distributed mass which becomes important at times and their nonlinearity may be
important beyond a certain extension.

There will be many occasions where a nice, neat equivalent circuit for an
element does not exist and it is not convenient to break it down into smaller
elements. In that case, it is customary to go into the laboratory and measure the

performance of the element. Sometimes there is a form that the results are expected

Figure-of-merit.
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to take" and this form is known analytically. If the results appear to behave in

the predicted manner adequately enough, the unknown parameters in the form (equations)
can be evaluated by means of the data. In other cases the results are merely tabu-
lated or a curve is fitted by the most likely looking interpolative functions,**
without regard to any other kind of analysis.

A distinction is sometimes made betwen theoretical and empirical equations.

It should be remembered that all equations in use to describe physical elements are
empirical in their essence. A theoretical equation is one that someone derived
empirically a long time ago and has been honored by the passage of time and at least
some success. Many are equations which describe the behavior of elements such as
springs and resistors, or processes such as viscous flow. A sophisticated name

for them is constitutive equations (as opposed to the conservation equations).

Most of these constitutive equations have one parameter which describes a
property of the element, fluid, etc., e.g., resistance, spring constant, viscosity,
and diffusivity. It is very convenient to look upon these equations as defining
that one parameter. There is then no question of the equation's being true, because
true/false doesn't apply to definitioms.

Often these equations are called laws but, obviously, it can't be a law and a
definition at the same time. It is most convenient, even if not historically accu-
rate, to call the equation a definition; then the law describes the parameter. Take
Ohm's Law for example: resistance is defined by R = E/I (the constitutive equation).
Ohm's Law then states that the R, so defined, is constant*** (independent of V or I)
for many materials over wide, usable ranges of the variables V and I. Fick's Laws
for di%fusion, Hooke's Law for springs, and Newton's Law for viscosity, as further
examples, can be treated in the same way. Of course, for all these examples, mate-

Fkkk
rials are well known for which the Laws (of constancy) do not hold.

This form is often derived from a very simple-minded conceptual model of the

element.
*%

Finite portions of infinite series for orthogonal polynomials, for a simple
power series, or for trigonometric functions are often used. The choice depends on
ease of calculating the coefficients, the criteria for goodness of fit, the kind of
function, and the ease of making the calculations from the equations.

*kk

The range over which the parameter is constant depends on the precision
involved. A spring may have a constant k, within 1%, over the range from zero to
maximum compression, but is constant over only 1/10 that range to within 0.03%.
kkkk

Very often, differential parameters are defined in these cases, e.g.,
R = dE/dI is called the ac resistance and is very useful sometimes.
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The amount of detail necessary in developing the mathematical model depends
on the available facilities. For example, some programs for digital computer
analysis have equivalent circuits for some of the more common electrical parts
such as resistors and capacitors. In these bircumstances, the full equations for
the system are never written down but are contained implicitly in the computer
program. They nevertheless are implied by the computer program itself and by
the data inputs to the computer. The fact that the final equations are only
implicit rather than explicit in no way gets around the fact that they do determine
the results.

Engineering handbooks (mechanical, electrical, electronic, etc.) are a most

valuable source of existing conceptual models for elements.

4.2 Traditional Engineering Analysis

It should be pointed out that our methods of analysis ordinarily have separate
models for the thermal, electrical, and mechanical behavior of a system. There may
be overlap in some areas but usually the models have been developed so as to keep
these overlap areas to a minimum. During the development of a system model, it
helps to keep in mind the admonition that the order we see in the world or a system
is one imposed by us, not one discovered by us. Thus, there may be several different
methods of analysis for the same system which are equally fruitful.

Everything in the world affects everything else in the world all of the time
but most of these effects are negligible for any particular system. The more pre-~
cise and exacting is the analysis of a system, the more must some effects be
considered which were previously neglected. For example, systems which are con-
cerned with length accuracies on the order of 10_4% must be concerned with tempera-
ture changes induced by the presence of a person. Systems which deal with fractions
of uVde must take into account small emf's due to chemical and thermal differences
which are always otherwise neglected (in some precise dc potentiometric applications
the kind of solder used on the joint is most important). It is a matter of judge-
ment and total resources as to what effects should be included in a system analysis.
Quite often special experiments are run, (sometimes simple and sometimes very complex)
to determine whether effects are small enough to be neglected or large enough so that
they must be included.

In this volume we are interested in how the system behavior is modified as the
parameters used to describe the elements change somewhat. It is therefore important
that the equations used contain explicitly the parameters which we are interested in
varying. Most conceptual models traditionally deal with parameters in the usual

range of operation of the system. Some recent work has been done wherein the model
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describes the system in the region of failure, near-failure, and abnormal operationm.
In parameter variations analysis it is a good idea to write down for each equation '
the range of parameters over which that equation is expected to be valid.*

When one of the specialized digital computer programs** is used for the analysis,
it is important that the engineer know the basis on which the program was developed.
The degree to which he carries this is governed by how pressed he is by other matters,
the resources available to him, how accurate his analysis must be, and how lucky he
feels, TFor example, the electronic equivalent circuits which have been assumed for
elements should be satisfactory to the engineer who is using the program but he may
take them on faith if he's in a hurry or has had good luck with them before. 1In
many cases, the parameters required by such a program as inputs are not the para-
meters in which the engineer is interested nor are they parameters which the manu-
facturer ordinarily specifies. Programs do exist for transposing between the two
but they too contain assumptions which should be explicitly identified if high
reliability is essential.

Nontraditional conceptual models for systems are being put in explicit form.
For example the behavior of many models is determined by the location of poles and
zeros in a Laplace transform. In some cases, techniques are available for analyzing
the system directly from the knowledge of the coordinates of the poles and zeros.

If parameter variations of the parts can be transformed into variations of pole and
zero locations, then parameter variations analysis can be accomplished.

It is important to remember that the techniques for parameter variations
analysis are not limited to such things as deflection of a beam or output of an
electronic circuit, but may be cost effectiveness, delivery time, or anything for

which an equation may be written. The analytic techniques are the same.

4.3 Automated Procedures
Some typical computer programs which are suitable for use in analyzing systems
are given and discussed more in Vol. II-—-Computation (Chapter 4) of this series.

The computer program is the framework of the model for the analysis of the system.

This should always be done in any exacting analysis of a system anyway; it
would save many mistakes from being made and serves to point up places where engi-
neering knowledge of the system is deficient. This process in itself will usually
require somewhat more understanding of the system than was needed to write down
the equations in the first place.

* Typical ones are identified in Vol. II-—Computation (Chapter 4) of this
series.
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It specifies the kinds of elements that are allowed amd the equatiomns used to
describe them (constitutive equations). The computer does not create the model

(in the sense in which this volume uses the word) for the system since the framework
is already in the program. Making an abstraction of the actual system, in the form
which can be used by a particular program is the job of the engineer, and in this
sense he is creating the model of the system within the constraints of the program.
The computer then performs the logical steps (including arithmetic) to give the
answers.

Some computer programs are much more amenable to parameter variations analysis
than are others, although many which-heretofore were not suitable are being modi-
fied in the appropriate direction. Computer programs have the great advantages of
simplicity, ease of use, short time of analysis, convenient printout of the results,
relative freedom from errors of calculation, comprehensiveness, and no forgetting
of details. Perhaps more important than any of these is the fact that the program
will be used since it is so easy, rather than an engineer's deciding not to make
the calculation because it is tedious.

The listing of advantages is misleading unless the difficulties are mentioned.
The first few experiences with a computer can be expensive, time-consuming, and trau-
matic. Computers seem to have personalities of their own. Programs are rarely
directly transferable from one machine to another--even of nominally the same type.
These are usually transition problems and are worth living through to get the bene-
fits. Engineers in large companies who can turn their problems over to programmers
can bypass the time consumption and trauma, but the first bills may induce heart

attacks.

The information on the parameter variations of the elements which must be pro-
vided to the program can come in many forms: probability density function, minimum and
maximum limits, rough engineering guesses of these, etc. The kind of parameter vari-

ations analysis that can be done obviously depends on the element input information.

4.4 Amount of Effort
The kind of model, its complexity, ease of analysis, etc., depend heavily on
the hardware stage. At first for example, only block diagrams are available for
large subsystems. The equations are rudimentary and the analysis is rather primitive.
Not only is the hardware stage important, but the data available and the man-
power and facility constraints must be considered. Some thought should be given
before starting an analysis to five problems of the resources:
(1) Resources required to plan the program,

(2) Resources required to write down the model or equations,
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(3) Resources required to get the data. for evaluation,

(4) Resources required for the evaluation itself, and

(5) Resources required for the interpretation of that evaluation.

One cannot say that a certain kind of evaluation must always be done. One can
only put a priority on it. Then, according to the resources available, start with
the highest priority and work on down the list. If the resources are not enough
you can say that certain goals or subgoals cannot be achieved. Then more or less
rational choices can be made. With a given amount of resources for the job,
obviously planning cannot be allowed to take too much of it.

The complexity of a system sometimes determines how deeply one can go into
analyzing it. For example some systems are so complicated that only the most
simple analyses can be done, because the very size of the system makes an otherwise
simple analysis turn into a very complex one.

All that is required for an anlysis of the variations of the parameters or
FOM's of a system is an equation or model of the system in terms of the parameters

of the elements and the knowledge of how the parameters of the elements do vary.
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5. Techniques for Analyzing Mathematical Equations
Two kinds of notation are used, depending on the circumstances. When it is
*
necessary that one parameter be solved-for explicitly, the equation is expressed

as

= g®
and the restrictions on X are given for the equation to be true. If the restrictions
are not critical or are obvious, they are usually omitted.
Often it is convenient and sometimes it is necessary to use a slightly different
functional form. It is more general and does not solve explicitly for any parameter.
There is no distinction between dependent and independent parameters, except as one

makes it in the course of the analysis.
fl(z) =0, f2(§) =0, ...

In either case, some of the x; can be random variables, although Sec. 5.1 does not
allow this generality. It makes no difference whether the equations are functions
of the original variables, or Laplace transforms thereof, or anything else; the
mathematical techniques for parameter variations analysis can be the same.

A great many analysis systems are available in the literature, many are given
names associated with the purpose of the analysis rather than the technique employed.
There are many fewer techniques than there are purposes; so this section is devoted
to those few techniques. It is divided into four parts for the analyses:

(1) Probability is not important.

(2) Probability is important; no explicit dependence of probabilities on a

common parameter.

(3) Probability is important; probabilities depend explicitly on a common

parameter.

(4) Extreme extrapolation of probability is necessary.
and has a final part:

(5) Display of results.

The degree of tractability (ease of manipulation and/or use) of equations
varies widely. Tractability is a function not only of the equation itself, but of
the manipulator's mathematical ability. There are times when it pays to develop a

new function especially if it can be used many times. Developing consists of finding

. N e . %
its general behavior and plotting it, finding the restrictions on its argument(s),
*  The notation x is used to represent a series of parameters x 1° ey The
X can be considered as a vector with a finite but unspecified number o% components.
*%

x is defined to be the argument of f(x).
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tabulating it, solving for its amalytic properties, creating useful computer routines
for evaluating it, etc. Once you've done all that, you've turned an intractable
.problem into a tractable omne.

Sometimes the analytic procedures which are indicated in an equation can be
easily performed, i.e., the symbols are easily evaluated by simple arithmetic
(+, -, %X, %) or are available in sufficiently accurate tables or computer routines.
Otherwise, when the equation is not tractable, there are several possibilities to
try:

(1) Look harder for tables or numerical approximations. This is virtually

always the first thing to try, and Refs. 3 and 4 are good starting

points.

(2) Linearize the equation--a favorite of engineers for over a century. This
can be done by:

(a) Taylor's series expansion (see Appendix B).

(b) Mean value theorem (see Appendix C).

(c) Expansion in series other than Taylor's.*

(d) Using less complicated models for the items or using ones which are
fortuitously compensating.

(e) Perturbation theory (see,for example, Ref.5). While in principle
this can be used to calculate a second order correction, it is rarely
done because of practical difficulties, e.g., the series may rapidly
diverge and it may be too complicated and tedious.

(3) Expand the function in a series.* This is the general case for (2) above.

(4) Evaluate the relative magnitudes of the terms and eliminate the ones which
are very small. This is a revision of the model and it is usually worth-
while checking to see 'what or how' original assumptions would have to be
modified to accomplish the same thing. Further, if some of the terms
virtually cancel each other, the process of legitimately neglecting terms

can be complicated.**

(5) Where probability density functions(pdf) are concerned, a transformation of
some of the variables, either singly or in combination, may allow more tract-
able pdf's to be used, especially where you are not extrapolating too far

out in the tails of the distribution.

Orthogonal polynomials and Fourier series are the most common. Up to the
linear term, most all of them give the same result. The advantages of one over the
other become apparent when many terms are used.

Consider as a simple example, w = x + y - z and let x, 2z = 1,000, y = 10. While

y is much smaller than x or z, it is an appreciable fraction of w. Eliminating y
would be a catastrophe.

25



(6) Decide that something else, other than the initially desired operationm,
will serve your purposes well enough.

(7) Put the problem aside "for awhile". This is probably next most favorite
to linearizing.

(8) Call in more expert help.

5.1 If Probability is Not Important
The heading could as well be phrased: "When only probabilities of 0 and 1 are
of concern." In this situation correlations (other than O or 1) of the parameters

are excluded as is the question of statistical independence (see Sec. 2.10).

5.1.1 Direct Calculation

This has always been a popular method of variations analysis where the
arithmetic could easily be done. Assume the equations are of the form fi(§) = 0.
Enough of the parameters are given values (these are called-:independent-parameters) so
that the others (called "dependent") can be calculated. It is assumed that there
are several fi(§) = 0, so that only a restricted number of x; can have arbitrarily
assigned values. The independent parameters are assigned a new set of values in the
vicinity of the first set and the changes in all parameters are calculated. This
process can be repeated several times. The use of digital computers makes this

method even more attractive.

5.1.2 Series Expansion

When direct calculation is too cumbersome, or when analytic results are
desired, or when whim or some other reason dictates, the functions can be expanded
into a series. Often the series is infinite and only sometimes can the general
term be calculated. Otherwise only a finite number of terms can be knowmn. A
Taylor's series is the most popular, but series of orthogonal polynomials have many
advantages over the Taylor's series. A Fourier series, also of orthogonal terms,
is also quite useful when the function is periodic. A good abbreviated discussion
of orthogonal polynomials is found in Ref. 3.

For the Taylor's series, the function is expanded about the nominal point of
operations so that Ax is a direct measure of the parameter variations. Appendix B
contains a more complete discussion of Taylor's series.

Most often the expansion is stopped after the first derivative and the equations
in Axi are linear. It is often advocated, but rarely done, that the higher order
terms be evaluated to see if they are really negligible. In any analysis you ought
to have a good idea about the error due to dropping higher order terms. It may come
from graphs, previous analyses, various estimates of those terms, etc. It can come

from evaluating the first derivatives at several points in the region of interest.
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If the first derivatives do not vary appreciably, you are safe in neglecting the
higher order terms (this is equivalent to numerical differentiation of the first
derivatives). ’

The use of differentials, i.e.,

3g (x) f (x)
dy = Zi 5;:—— dxi or I axi dxi =0,

1s equivalent to neglecting the higher order terms.

5.1.3 Sensitivity
This 1s a term which is often used in the literature. It has no precise,

universally accepted meaning; so don't be dismayed by not knowing it. If you run
across several meanings which differ, just remember that it's a free country (more
or less) and don't worry about labels. Two concepts which are used quite often are
the partial derivative which gives arithmetic variations, and the logarithmic
derivative which gives relative* variations.

Consider the arithmetic variations. For simplicity, suppose y = g(x), then the

sensitivity is

Ly . &y
Ax  dx
In the complex case where f(x) = 0, the sensistivity of x; to xj is
Ax, 9x
i, 71
bx ox,
3 J

Now consider relative variations. For simplicity, suppose y = g(x), then the

relative sensitivity is

Ayfx . dyfix . dy | x _ d(n y)
y/ % y/ % dx y d(ln x) °

In the complex case where f(x) 0, the relative sensitivity of x; to xj is

Ax.//ij ) (ij/bx, . axi . fi _ 9 1In Xy
X, /X%, X, /X, X, X 3 1Inx, °
R i/77] h| i 3

Still another kind of relative variation is possible, e.g., for y = g(x), the

sensitivity is
px /ﬂ_xzslx. =4y
Ay/x Yy &SI
Also called fractional or percentage.
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In the complex case, where f(x) = 0, the sensitivity of X to xj is

Ax . 8x. X, 9 x,
1 = ] =~ 1, = 1 .
Axi/ X, 6xi/ xj ij xj 9 1In xj
J

The nomenclature is rarely the same in several articles, plus it is easy to see that
the possibilities are not yet exhausted for kinds of sensitivity. The definitions
will often boil down to one of those above, or at least to one which is readily
recognizable. As mentioned before, don't worry about comnsistency in labels nor in
trying to match your needs to a label. Just pick something that is suited to your
needs, or try several different kinds of sensitivity to see which one is best for
the case you have.

The partial derivative notation is ambiguous unless the variables which are
independent for the differentiation are shown or easily inferred. Furthermore, if
there is more than one f(x) = 0, the differentiation gets complicated due to there
being several dependent variables. See Appendix D, Ref. 6, or any advanced calculus
text for a further discussion. Appendix D is rather condensed, but it shows you how
to stay out of trouble. Sensitivities are explained further in Sec. 6.1,

Which definition of sensitivity to use is not a matter of right and wrong, but
of the degree of utility in the specific application. Use the one that tells you
what you want to know. But none of them will tell you everything about the behavior.
These sensitivity indices have the inherent disadvantages that they relate only two
parameters at once and consider only the linear approximation. If the combined effect
of several parameters is desired then some combination must be worked out. But any
such combined number, or expression, has the disadvantages that are built into it,
viz.,

(1) The particular combination is not unique. There are others that could as

well have been used.

(2) One number does not completely describe the multiple effects.

A further discussion of this problem is given in Sec. 6.1.

5.2 Probability Is Important; No Explicit Dependence of Probabilities on a Common
Parameter
It is presumed that extreme extrapolation of the pdf (this usually means going

* .
far out into the tail region) is not necessary. Section 5.2.1 treats the case where

* This means, at the farthest extrapolation, that cumulative probabilities of less
than 1/N, where N = number-of-items-in-sample, will not be considered. It is safer
to stay within 2/N or 3/N due to sampling problems. To be quite comservative, you
would stay within 5/N or 10/N.
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a few moments of the distributions are to be calculated. The rest of the subsections
treat the situation where the distribution itself is to be calculated.

There are only a few cases where the problems can be solved analytically, even
under simplifying assumptions and even where only limited information is needed. So
if you don't hit one of those few, the three choices available are:

(1) Transform the situation to one of the tractable ones. A rather procrustean

approach is usually necessary.

(2) Use numerical methods.

(3) Work on something else for awhile, presuming that you have conscientiously
exhausted the other possibilities. Any problem which is put off long enough
will no longer need to be solved.* If the pressures for a solution get too
great, go back to (1) and imitatée Procrustes some more.

It is presumed in this section that the population pdf, or enough of its properties,

is known. Estimation from a set of data is not treated here.

5.2.1 Evaluation by Moments**
The simplest situation, and the only one amenable to general analytic treat-
ment is where the functions are linear. The equations must be in the form y = g(x)

Kk
and, further, must have the special form

y = Zi a; ¥, -

Introduce the following notation for the special moments—-mean and variance

(variance is a short name for square-of-standard-deviation):

u = average of y, My = average of x5
02 = variance of Vs 0% B variance of X
pij = pji = linear correlation coefficient of X and xj(i#j),
pij o Gj = covariance (xi, xj).
- 2 = : 2 2
Then u Zi a; My s g Zi Zj%i a; aj covariance (xi, xj) + zi aj of. In

words: the mean of a sum is the sum of the means; and the variance of a sum is the

sum of the variances plus covariances.

* Unfortunately, the phrase 'long enough" is defined only by this sentence, thus
turning the sentence into a tautology. Unfortunately, it is difficult to give good
sound advice without being tautological much of the time.

ek
Statistical moments are analogous to moments of weight or mass. The r-th

. . — ¥ . .
moment about the mean (center of gravity or mass) is M= f (x—1n) p(x)dx. Pairwise

r s
momenFs about the mean are Mrs = f (xl—ul) (xz—uz) pdf(xl,xz)dxldxz, Mll is the
covariance of Xy and Xy

Kkk
The summation limits are presumed to be over the appropriate range.
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These formulas are true regardless of the pdf's of any of the variables and regardless
of any statistical dependences among the variables; in particular the variables need
not be Gaussian. There are popular misconceptions about the formulas so see the
following examples; they help to make the formulas clearer.

(1) Let y = x; +xy = %y
then p = My + My - u3
2 2. 2 2
c = o1 + o, + o3 + 2p12 0105 = 2p23 0,04 = 2p310301
(2) Same as (1), but let X1 Xy Xg be linearly uncorrelated
then p = Hy + Hy = Mg
2 2

_ 2 2
g = 01 + 02 + 03

(3) Same as (2), but let %y have a Normal pdf, X, have the negative exponential

pdf, and x., a Weibull pdf. Then u and 02 are the same as in (2); these

3
formulas are true regardless of the pdf's.

(4) y=2x, - x,+ 3x

1 2 3
2 2 2 2
g = 401 + o, + 903 - 4p120102 - 6p230203 + 12p31030l

While it is possible to write moment equations higher than the second, it is
rarely if ever done in an engineering problem. Some other approach would be used.

If the equation is mot linear (and cannot be made that way), then numerical
methods must usually be used. Generally, it will be as easy to deal with the pdf's

as with a few moments; so the next sections will be applicable.

5.2.2 Evaluation of the pdf's—-Tractable Problems

There are not many tractable combinations of probability density functions.
The common ones are listed in Appendix F. While it is not necessary that a problem
be formulated in a tractable way it is certainly more convenient. Therefore many of
the pdf's are chosen so that the result is tractable rather than because one is so
much better than the other in describing the situation. Virtually all of the combi-
nations are given for statistically independent variables; statistical independence
is sufficient but it may not always be necessary. The completely general joint
probability density functions are difficult if not impossible to find for anything

but Gaussian distributions.

*
A sufficient, but not necessary condition is that X5 Koy X be pairwise statis-

tically independent; i.e., it will be true if they are pairwise Statistically
independent and may or may not be true otherwise.
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5.2.3 Evaluation of the pdf's—-Intractable Problems
The problem is formulated so that

y = g(xl, Kys eees xn) ’

pdf (xl, Kyy eoes xn) is given.

Then
dxl
pdf(y) = fdxz 'fdx3 e fdxn Pdf[xl(}’» o Kys coe» xn): Xoys sees Xn] . |E‘y—‘| .

where the integrals are taken over the appropriate region of x. It doesn't matter
which variable is taken as X;. If several variables are transformed, the Jacobian
of the transformation must be used; see, for example, Ref. 6.

There are usually one of two difficulties here (if Sec. 5.2.2 doesn't apply):

(1) it is impossible to solve y for any X;, Or

(2) if you can solve it, you cannot integrate it in closed form.

If y is the sum or difference* of several variables, the operation is called
convolution. If transforms are used, such as Laplace tramnsforms, convolution of
the actual variables is equivalent to multiplication of the transforms. The method
of characteristics (in statistics) is equivalent to Laplace transforms.

If the integral is intractable, as assumed in this section, the only way to solve
the problem is numerical integration. There are two general kinds of numerical
integration:

(1) Direct--the integral is approximated by some kind of sum.

(2) Monte Carlo--instead of a frontal attack on the integral itself, probability

is used in the form called Monte Carlo**; one need not invert the function
y (i.e., solve it for xi) to solve the problem, nor must the integral be
tractable.

If no multiple integrals are involved, there are a multitude of techniques to
use for direct integration. The simplest one generally used is Simpson's rule,

The more complex ones are forms of Gaussian integration (Ref. 3, chapter 25 has a
short discussion--see Vol. II, Computation, for more complete references to Numerical
Methods) wherein the function is evaluated at special, nonuniform intervals.

If multiple integration is involved, the choices are much more restricted.

Basically, the multiple integral is replaced by a multiple sum. The multiple sum

is then evaluated term by term. If there is an m-tuple integral and n divisions in

Technically its a sum of %y + (—x2).

Fek
The origin of this name is the famous gambling place in the Principality of

Morocco; the name was chosen because of the direct association of both activities
with chance results.
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the range of each variable, there will be on the order of n™ terms in the sum. in
principle it is straightforward; in practice it is tedious and time consuming. If
" this latter is too true, then Monte Carlo procedures should be considered.

AT ANY STAGE, IF THE SITUATION IS TOO COMPLICATED, REFER TO THE 8 SUGGESTIONS
IN THE INTRODUCTION TO SECTION 5.

Monte Carlo is an expensive, time-consuming process that is only feasible because
of the availability of digital computers. It should be used only when computef time
is quite cheap or there is no other way out. Suggestions (6) and (7) in the
introduction to Sec. 5 are particularly apt.

If all else has failed and Monte Carlo is the way to go or perhaps you think
you should try it at least once to become familiar with the method, then attention
must be paid to the pdf of the variables. You have to be able to choose values of
% through X according to the probability density function. The simplest situation
is where the variables are statistically independent and the combined probability
density function then directly factors into the product of the individual pdf's.

Computer subroutines are available which effectively divide the interval from
0 to 1 into n equal divisions and make a choice of one of those numbers on an
equally likely basis. The individual pdf's are converted into individual cumulative
distribution functions (cdf) and the number between O and 1 chosen above is converted
to a value of X, by that cdf. A new choice of number is made by the above method for
each X, and an x; calculated from its own cdf. When the complete set of X is avail-
able, y is calculated and its value recorded. Very often y is converted from a
continuous variable to a discrete variable where, for example, the probability of
success or failure is of importance.

The process is repeated tens, hundreds, or thousands of times depending on the
accuracy desired, the machine time available, and the money allowable. Roughly
speaking you will not be able to estimate probabilities smaller than 1/N where N is
the number of Monte Carlo trials.

If the variables are not statistically independent and a linear correlation
coefficient will describe the statistical dependence adequately, techniques are
available in the literature for choosing the probabilities taking these linear
correlations into account.

If a more complicated statistical dependence than simple linear correlation is
necessary, there will be severe practical difficulties in calculating the x5 and
professional help will be needed. As before, the advice to simplify the problem
should be taken to heart.

The combined distribution function of the variables regardless of how it is

made up is rarely known very accurately, i.e., the correspondence of a given equation

32




' to physical reality is usually rather dubious especially out on the tails; therefore*
there is a practical limit as to the number of trials to make because the increased
precision will merely result in more specific knowledge about your ignorance.

There are several ways of analyzing the resulting data. One way, for example,
is to draw a cumulative distribution curve for the y and use it to calculate the
tolerance intervals. Another way is to calculate the first several moments of the
distribution of y and to find one of the tractable distributions which fit the data
reasonably well. 1In thils procedure care must be uéed to distinguish between statis-
tical and engineering significance. For example, even though the data may obviously
not fit a Normal distribution from a statistical viewpoint, they may well fit one
close enough for the engineering purposes at hand. It is very likely that professional
help from a statistician will be necessary during this process but the engineer
should never abdicate his responsibilities in this area anymore than any other area.
He should learn the whys and wherefores as much as necessary and then make his own
decision. A little practice with asking questions will yield great benefits. Do not
be bashful--you are not getting paid to have a complete understanding of the statis-
tical literature.

If there is moré than one parameter y to be calculated from the Xys the same set
of x; may be used for each one of the y's——if the fact that the results on the y's
will be highly correlated will not be of any importance. This will have the advan-
tage of saving some machine time.

Special techniques for calculating an x; from the probability between O and 1
are available for some distributions and a specialist in numerical analysis can be
of assistance here.

It is not expected from the descriptions given here that one will go out to a
computer and perform the calculations himself. This discussion is intended to make
the engineer able to interpret his problems more accurately and confidently to the

numerical analyst or computer programmer.

5.3 Probability Is Important; Probabilities Depend Explicitly on a Common Parameter
The explicit dependence of the probabilities of several variables on a common
parameter can take several forms:
(1) The type of distribution stays the same as the time changes. (This common

parameter is referred to as "time” throughout this section, although it can be

There is some specialization in this field. A Computer Programmer will take
the particular operation you wish to perform and put it on the computer to be used.
The Numerical Analyst will decide from the general analytic description of the
problem what kind of numerical approximation to make. Very often these specialties
are not combined in the same person.

33



anything else.) The parameters of that distribution are then functions of time, and
the values of the random variable at different times are statistically independent.
In a few cases it may be possible to get an amalytic solution of the problem as a
function of this common parameter but these cases would be extremely rare and the
occurrence would probably be most fortuitous.

(2) The general situation is as in (1) above, but the values of the random
variable are statistically dependent. Such might well be the case, for example, for
distributions describing the drift of resistors. It would be most unlikely to have
the value of a resistor at one time statistically independent of its value at another.
If this statistical dependence exists, the analysis is likely to be very complex;
the services of a statistician and/or mathematician will probably be necessary. Just
keeping track of everything exactly, and meaning exactly what is written down may
be difficulties enough for one person.

{(3) 1If the probability distributions are disqrete the extra parameter can

perhaps be treated as another event.

The techniques of analysis will be the same as in Sec. 5.2 but more complicated
and complex. Further simplifications will probably be made in order to handle the
problem. The thing to watch out for here is that the simplifications are not too

simple-minded.

5.4 Extreme Extrapolation of Probability Is Necessary

If you need to read this chapter you are already in trouble--extrapolating out
into the tails of probability distributions is one of the mest hazardous kinds of
extrapolation there is. The reason for including this section in the volume on
parameter variations analysis is that one of the regions of most concern in high
reliability is where the parameter has a value way out on a tail of the pdf, viz.,

has very low probability of occuring.

5.4.1 A Criterion for Rejecting Out-liers Is in Use

An out-lier is a data point that lies way out from the rest of the data. Some
people believe such points can be rejected on purely statistical grounds, others do
not. The case where a datum is rejected, regardless of its location, on sound
physical grounds is entirely different and not considered here. There are good
reasons for being suspicious of any data rejection which is made on statistical
grounds, but this is of concern in Sec. 5.4.2, not here. 1In that section, a good
explanation is given of sorting the data into two categories, but still using all

of it.
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Assuming that, in fact, out-liers are being statistically rejected, a useful
rule of thumb for keeping the situation under control is:

Never extrapolate any fﬁrther than you are willing to accept a datum

without calling it an out-lier.
An example of this is shown in Fig. 1 for Chauvenet's criterion.* It is used in the
example because it is fairly common and is one of the better criteria for rejection
of out-liers. The criterion has been slightly modified so that it more easily fits
the scale of plotting positions (N+1 has been substituted for N); the plotting posi-
tions are expected values.** With expected value plotting positions, the first point
is plotted at 1/N+1 (N is the number in the sample), the second point at 2/N+1, etec.
Chauvenet's criterion for rejection of an out-lier can be stated as:

(1) Draw the estimated cumulative probability line through the data points on

cunulative probability paper.

(2) Find the probability corresponding to /N+1.

(3) Find the intersection of that probability line with the calculated line.

(4) This value of ordinate is the dividing line between rejectable out-liers

and good points.

In the series of points marked with X on the graph there are no out-liers; in the
series of points<markéd with 1 on the graph the first two are out—liers.*** The
estimated line is shown dashed beyond the out-lier limits and solid lines are extended
parallel to the probability axis. Since you have now rejected any and all information
from points in the "strength" region outside the out-lier criteria you have no infor-
mation about the distribution in that region and it is not possible to extrapolate the
distribution validly in that region. Instead in the example in Fig. 1 the cumulative
distribution curve is drawn so that the probability is a constant anywhere in the

*hkk
out-lier region. Methods associated with the Chebyshev criterion for showing

A Normal distribution with N=9 is used to plot the illustration.
*%k

There are other possible plotting positions. Many authors have their favorites.
If it turns out to make an important difference to your results which one you use,
you are in serious trouble because the uncertainty due to scatter ismuch more .than that
due to plotting position. If it makes negligible difference which one you use, which
is the case when there are a large number of points, then of course there is no
trouble.

*kk
We assume for illustration that either set of points would give the same

calculated line.

kkkk
This name has many spellings in English since the transliteration from the

Russian is not unique. Any phonetic spelling is as 'proper" as any other.
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limits on the ignorance region are discussed in Sec. 5.5.2. Suffice it to say here
that they are usually unsatisfactery because they are too weak.

For convenience call the region which contains the out-liers the defective
region. Then the distribution can be considered as made up of a tractable one in
the central region plus an unknown one outside that region. The central region is
usually reasonably well taken care of by the data and the problem becomes one of
trying to estimate the fraction in the unknown region which, for simplicity, will be
called the fraction defective (fd). The true fd can be estimated by usual quality
control techniques, e.g., a single sample.

Very often the sample size will be small enough so that the estimated fd is
dishearteningly large for any reasonable confidence even for no defectives found in
the region. 1In this case the engineer should consider the uses of prior information,
although in critical applications one is hard put to it to find a satisfactory method
of using any kind of prior information. In other applications an engineer will
generally use his own judgment and he will have a tendency to over-estimate the
goodness of the situation.

The two very basic difficulties of an out-lier criterion for high reliability

applications are:
(1) 1If data are outright rejected in some out-lier region then you can't tell

at all what's going on in that out-lier region. But that region is pre-
cisely the place where you must be making estimates about the situation.
(2) 1If data are rejected in the out-lier region only for purposes of estimating
the central distribution, and then if the number of outliers are used to
estimate the fraction lying in the out-lier region, the resulting estimate

of fraction defective is too large to be of use.

5.4.2 No Statistical Rejection of Data Points Is Used

When there is no criterion for rejection of data points, you have at least a
fighting chance for estimating low probabilities since they are not excluded by the
nature of your criterion. In this kind of situation one sometimes resorts to the
Chebyshev approximation which states that IF the true mean (u) and true standard
deviation (o) of a sample are known, then the fraction which lies in the tail region
beyond * k¢ is less than or equal to 1/k2. Most often this is a dishearteningly
large fraction and it pays to see in a geometric way how it arises. Variance corre-
sponds to the physical moment of inertia and, for a given mass, the maximum moment
of inertia is obtained by having all the material concentrated at the outer boundaries.
In the Chebyshev case the distribution will be two spikes each of area %f at + ko

from the mean and a spike of area 1-f at the mean as shown in Fig. 2. The calculated
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Figure 3
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variance is 2 x &f x Egz 4+ 0 = ¢°. Therefore the amount at a distance * ko from p is

£ = 1/K%

for this worst possible case.

Often one has much more information than is used in the previous derivation. If
so, he can calculate a modified Chebyshev criterion.* Assume that within certain
limits of the variable, its distribution can be represented by some tractable one.
What, then, is the worst possible situation in the tails? It is shown in Fig. 3
that: IF the true mean and true variance are known and if some of the distribution
is known to lie in a central region with the mean of the central region at the true

mean, then the amount at a distance * ko from y is
' 2
f'=(0Q - a)/k

where o is the fraction of the total variance that is included in the central part
of the distribution. If a were 90% to 99%, for example, f is much less than given
above, and is less likely to cause frustration for the engineer. The unfortunate
part of the Chebyshev and modified Chebyshev inequalities is that they assume that
the true mean and the true variance are known. The importance of this assumption
cannot be overemphasized, especially in the modified Chebyshev criterion. Unfor-
tunately, all that is ever known (and it is only estimated) is the variance and mean
of the central portion; it is precisely those pips out on the tails--so unknown and
elusive-~that modify the variance ever so slightly but ever so importantly. Therefore
the two Chebyshev formulas are useless for estimating the area in the extreme tail
region. Since this is not the usual position taken in the literature each engineer
should convince himself of the applicability of the above reasoning (i.e., the
previous two sentences).**

It is shown in Appendix A that the change in the mean due to a pip on the tail
requires many more data to detect™™ than does a change in the variance. It is also

shown that the number required to detect*** a change in the variance is 2/k4f2. This

This procedure is not common in the literature and Chebyshev had nothing to do
with it (as far as is known)--but it is similar to the original Chebyshev derivation
and reduces to it for nothing known about the distribution.

&%

The reason the discussion is included is to show what is bad as well as what
is good.

*
Hkx If the change is to be detected the uncertainty in the estimate due to finite
sample size cannot be larger than the change due to the pip.

39



is.graphed in Fig. 4. As an example, 10_4 defectives at 10c would require over
20,000 observations in order to detect the difference in the variance due to the
.pipf Of course, if an engineer were to fihd one of those observations at 10¢ he
would undoubtedly discard it for all sorts of good reasons. This paragraph confirms
the statement made in Sec. 5.5.1 that we cannot know the variance accurately enough

to use the modified-Chebyshev inequality.
Eventually, after searching around for a method to use for extrapolation, you

will be forced to the one discusssd above in Sec. 5.5.1 except that the "bad" data
are not called out-ljers but are used to estimate the boundaries of the central region

and to estimate the fraction in the "defective" regions.

5.4.3 Extreme Extrapolation Is Necessary
When extreme extrapolation appears to be necessary, measures should be insti-
tuted to avoid it. Suggestions are:

(1) Use a safety margin.* Estimated values of 3 to 6 are often used for the
safety margin. Anything much less than 3 is not likely to be enough unless fraction
failures on the order of 1% or more are satisfactory. Safety margins of more than 6
are likely to result in overdesign because the accuracy of the model is usually not
that good; that is, in order to get that much safety margin you may well have to
change some of the properties of the materials, use a different kind of material, or
change the design. The failure modes you have neglected, or the things you are not
accounting for in the new setup, or the approximations that you are making in the
calculations may well negate the extra safety margin benefits. For example, if
steel is made harder to make it stronger it may be more susceptable to brittle frac-
ture, its notch sensitivity may be drastically increased, its fatigue strength may
have been lowered, its corrosion susceptibility may be much higher, etc. It is best
not to calculate a probability associated with these safety margins since the distri-
butions are usually not known well enough.

(2) Use a 100% screen on the material to eliminate those items which otherwise
would be in the tail region.

(3) Try to eliminate some of the uncertainty by using ordinary engineering
formulas to calculate the deviations. (The formulas are ordinary but their applica-
tion to this is not.)

(4) Test a great many more samples. This is even more difficult than it sounds
since if you are to make an estimate about the following year's production, you have
to have a random sample from that production.

Safety margin is defined here as the difference in true means divided by the
standard deviation of that difference.
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(5) Use nondestructive testing in combination with the engineering analysis of.
(3) to eliminate the poor elements. l

(6) If there is a contractual or other firm requirement that a probability must
be associated with a certain extrapolation, practically anything (and anything prac-
tical) you do will be a lie. But using the Gaussian distribution will probably get
you by with no serious questions and will satisfy the requirement--just avoid kidding
yourself even though you are kidding someone else.

(7) Try to make at least qualitative use of your prior knowledge of the elements
and how they are made. Even though it is difficult to take into account statistically

and quantitatively, it is still useful information for engineering purposes.

Remember that just because a distribution is tractable does not mean that it is
practical. When someone says, for example, that an ideal-batch has a Gaussian distri-
bution remember that he is defining ideal-batch rather than giving a description of
a previously defined ideal-batch.

In some cases data are recorded on the near tails. For example, 1,000 items may
be put on life test and the first 10 failures recorded. In this case extrapolation
is not as far into the tail region as if the first 10 out of 100 were measured. If
all of the sample has been failed or measured it is wise to remember that only the
weaker ones are going to affect the reliability. Therefore, extrapolation is best
made using only the bottom half or less of the points.* Some techniques are available
for fitting a line to these censored or truncated distributions and these have to be

used unless an eyeball line is drawn through the points.

5.4.4 Small Random Samples Are Unreliable

In Figs. 5 and 6 the results from random samples are shown. In all cases the
numbers are probabilities directly without having been fitted to a typical distribu-
tion, i.e., random numbers are picked in the interval from 0 to 1 with a uniform
probability density.** The method of presentation shown here is relatively distribu-
tion free. The "low probability'" graphs (lowest 10 out of 99 points--Fig. 5) are
plotted on log-log paper to enable the large range of numbers to be shown; the "high

probability" graphs (all 9 out of 9 points--Fig. 6) are plotted on Gaussian-Gaussian

*
The upper half of the points can be analyzed to see what made them good and used

as engineering feedback to design.

*%
These numbers are all generated on a computer by one of the algorithms for
generating pseudo-random numbers. The exact technique is not iImportant here. (It can

easily be argued that no machine program method can generate truly random numbers.)
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scales to better show the entire range. (The exact appearance of the graph depends
on the scale used to represent the numbefs.) In the limit, all of the numbers would:
lie on a 45° line. The actual randomly-selected probabilities are plotted versus the
expected values (i/N+1 where i is the i-th ordered point from the bottom and N is the
sample size). 1In the Fig. 5,10 samples of the 10 lowest out of about 100 points

(99 to be exact; so the plotting positions are round numbers) are plotted to show the
extreme variation to be expected in the tail region and to show why guessing at the
distribution from such a sample can be so misleading. In Fig. 6, the sample size is
9 and all 9 points are shown. The fact that the most of the point sets do not look
as if they were supposed to fall on a 45° line through the origin is significant
because a very large sample would look that way. Again note how misleading it would
be to estimate the true line from most of the samples.

The problem of out-liers could be treated on these figures. A line is drawn at
the "expected plotting position, %/N+1" to correspond to a Chauvenet criterion. The
points which lie below it would then be considered out-liers or defectives.

The purpose of the figures is to illustrate what random samples can look like.
The line at 45° is the true population line, why not sketch in your own eyeball
estimated line? With variations like those shown it is easy to see how one can be

misled by a sample and why extrapolation into the far tails is poor practice.

5.5 Methods of Display of Results

There are four basic methods of display of the results:

(1) graphs,

(2) equations,

(3) tables,

(4) computer routines.

The one to be used is governed by the needs of the occasion and by the time, money,
and equipment available--and by personal whim.

There are several forms of graphs. 1In the usual kind a dependent variable is
plotted versus an independent one with, occasionally, a second independent variable
being used to label some separate curves. Examples of this are collector voltage-
current curves for a transistor with base current as the second independent variable,
and pressure-flow curves for a centrifugal pump with motor speed the second indepen-
dent variable. Even less occasionally a third and further independent variables can
be used on separate curves. Very occasionally someone makes a three-dimensional

graph. Another kind of graph shows contours: the x and y axes are used for the
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independent variables, and contours for given values of the dependent variable are
shown. Contour graphs are sometimes called Schmoo plots in electronic engineering
circles.”®

Equations are a very common form of displaying the results of an analysis,
especially if they can be put in a compact tractable form. If the equations are
infinite series or very complex it is usually helpful in addition to use one of the
other display methods.

Tables are used in preference to or to supplement graphs where the additiomal
accuracy is needed or where many values will have to be looked up.

Computer routines are a relatively new form of display of results wherein a
computer program for calculating the results is given but the results per se are not.
This is very helpful of course, much more so than tables, graphs, or written equations,
when the results must be used within other computer programs. For example, a computer
routine for calculating a particular function to four significant figures is much more
useful in a computer analysis than is a table of values. If extensive use is to be
made of the computer routine, it is often advisable to prepare one of the empirical
interpolation formulas such as a Fourier series or a Chebyshev series in order to be
able to calculate more efficiently the values to a given accuracy. In this case the
original form of the equation is lost but the numerical accuracy is preserved.

Fairly often it will be desirable to use more than one form of output, perhaps
even all four in order to have the information available in the easiest way to dif-
ferent people who wish to use it. Sometimes there will be money and calendar-time

problems if the display of results is too fancy.

*
The reason for this is presumably the resemblance of many contours to the

Schmoos of Lil' Abner fame.
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6. Uses of Mathematical Analyses

There are only a very few basic techniques for analyzing mathematical models but
the models are used in a great variety of ways. Much of the literature is oriented
toward a discussion of the purpose of the model and the names of a particular analysis
are often associated with that purpose, e.g., worst—-case analysis. This section wili
be short since the basic techniques are given in Sec. 5. When you run across a "new"
analysis technique in the literature, ask the question: Is it named for the purpose
or the mathematical method? There are many purposes and few methods. You are likely

to find that the method is a standard one.

6.1 Sensitivity and Tolerance Analysis

These are not precisely defined terms, but they do relate the variation in a
figure of merit (FOM) to the variations in parameters. Very often tolerance is the
word used to describe the total variation in the FOM due to all of the variations in
the parameters, and sensitivity is reserved for a measure of the change in the FOM
compared to a change in a particular parameter, the other ones remaining constant.

All of these measures have a disadvantage inherent in them, viz., they do not
convey all of the information about a system that there is to convey. The more
numbers one uses the more information he can convey, but the more difficult it is to
assimilate; the fewer numbers one uses, the less information he can convey, but the
easier it is to assimilate. It is for this reason that the multitude of definitions
has arisen.

To discuss sensitivity and tolerance precisely definitions are required. First
suppose that there is an FOM (e.g., gain of an amplifier) expressed in terms of a
set of independent parameters (x); this is the y = g(x) formulation mentioned in

Sec. 5. Then sensitivity of the FOM to each parameter is defined here” as

S, = 3 FOM
i 9X,
1

where the x refers to the entire set of components (xl, x2, ees)
and the |x refers to the variables considered independent for this differentiationm.
(See Appendix D for details on tricky partial differentiation.)

Next suppose that the situation is more complicated. Let there be an equation
for the FOM in terms of the parameters, x,and several equations relating the x to

each other and possibly to other parameters. Let u be the subset of parameters of x

The definitions of sensitivity to follow are selected from the possible ones
given in Sec. 5.1.
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that are to be considered independent for this particular case. Then the sensitivity

of the FOM to the parameter u; can be defined as

S . 2FoMl _y 2 FOM o% .
i,u 9 u, u 3 ij Bui u

There is no law which determines which subset of all the parameters is chosen to be
independent. It is up to the engineer to pick the one to give the most useful sensi-
tivity. Once in a while one may wish to calculate an Si’E-and an Si’z.where u and v
are different subsets of the total set of parameters; it is a reasomnable thing to do.
A relative sensitivity is defined in Sec. 5.1. When it is adapted to the situa-
tion described above, the relative sensitivity of the FOM to the parameter u, (with

the set u taken as independent parameters) becomes

u, 9x, ? 1n x,

S SV 3_FOM Y - 3 1n FOM N i .
i,u FOM j ox, du, j 9 1n x, 3 1n u,
- J X ile J X i

This latter could be interpreted in an example as: There will be a 1% change in the
FOM, when u, changes by 10% and the rest of the u remain constant.

Other sensitivities, depending on one's needs, can be similarly .defined. Even
though the notation is complicated at first (and second) glance, it can be deciphered
by following it through. For simple examples, see Sec. 5.1. The reason for the
complexity is that it is so easy to become hopelessly snarled during a partial dif-
ferentiation, unless one is quite rigorous with the notation.

Tolerance is usually defined as the variation in an FOM due to a combination of
variations in the independent parameters. Before this has much meaning it must be
decided how these will combine. Two simple methods of combining are worst-case and

"statistical". The worst-case tolerance (for independent parameters, u) is

9 X, *
A FOM =7 - 2 _FoM x ——d < A u
= i i.u Aui = Zi' 3 x. 3 u. i .
we,u = J b X iju

The statistical tolerance usually means the standard deviation of the FOM.
Except for a very few cases, the only function for which the standard deviation is

easily calculated is a linear function. A Taylor's series expansion (see Sec. 5.1.2

*
| | means the absolute value of what's inside the parallel bars.
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and ‘Appendix B) is most often used to make a function linear. Then

) _ 3 x
c2(FoM) = I, (5, )2 o) =, (I, S o« )?’ o%(u,)
s 3 i]u

where x, is the point about which the Taylor's series is taken (and is the mean of
the linear function--about which the variance is taken). This formula, as Sec. 5.2.1
shows, is for statistically independent variables--which is what the subset u has -
been presumed to be. This formula is true regardless of the pdf's of the u and FOM,
but remember--there are no probability statements associated with it. In particular,
avoid using Normal (Gaussian) probabilities. The Central Limit theorem is often
invoked to show that the FOM has a Normal distribution, but this may be inadequate,
as is explained in Appendix E, as well as because the calculation is based on
dropping all but the linear terms in a Taylor's serles expansion.

For some kinds of functions there are special relationships between all the
sensitivities for a given function (see Ref. 7 ). This can be a help in both doing

and checking the analysis.

6.2 Worst-Case Analyses

One of the apocryphal laws of nature is "if it can happen, it will". It is given
different names by various groups and has possibilities of being extended, e.g., "if
it can happen, it not only will, but it will in the most embarrassing way possible".
Much reliability effort is devoted to reducing the adverse effects of this law on the
life and performance of equipment. It was natural then that something called "worst—
case'" design and analysis would spring up in reliability; no attempt is made here to
define the concept of worst-case design as opposed to analysis, in fact, it is diffi-
cult to do.

At this point the plural in the section title becomes important because it turns
out that different people have different sets of specific criteria for worst-case.
Obviously the worst worst—-case is where everything falls apart or otherwise ceases to
function, and just as obviously nothing can work under those circumstances. So
something else is meant by worst-case, viz., a set of limits is established by some
criteria (to be discussed later) and within those limits a worst-case analysis is to
be performed. For example, if it is assumed that the resistors will not deviate by
more than 10% for any reason during the design life of the equipment, will all the
circuits continue to function, even if the resistors get spiteful about it? 1In this
connection, probabilities except for zero and one are ignored, but direct physiéal
dependence should be taken into account. For example, if a voltage bus feeds several

different points, the voltages at each of the several points should not be treated as
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variables independent from each other. Likewise if temperature coefficients are
taken into account, one part of the system should not be presumed to be at the hot
l1imit and the other at the cold limit at the same time--unless of course it is
physically reasonable that it be so. It is presumed in the following discussion that
these correlations of zero or one are taken into account wherever possible. A very
general boundary condition for the analysis is that the circuit or system should be
constructed according to the specifications in the drawings and that the analysis
proceeds from there. The fact that there may be a nonzero probability that some
parameters will fall outside the limits established for the analysis is ignored. The
most likely candidate for setting the limits referred to above is absolute worst-case
(AWC). 1In AWC the limits for each independent parameter are set without regard to
other parameters or to its importance in the system. The position of the limits is
usually set by guess or by golly; the engineer must estimate these by reference to
his experience, to the manufacturer's data, and to his company's experience (see

Sec. 7). In some cases he will perform several analyses with different limits for
each--just to get a feel for the situation. Obviously, the entire procedure of
setting limits has no strict rules.

There are many modified worst—case (MWC) analyses developed because of the
presumed pessimism of AWC. It is not worthwhile going into all of these here, but
a typical one uses the following method for setting the limits: Critical items are
given limits as in AWC and the rest of the items are given limits of their purchase
tolerance.

In any worst-case analysis, the values of the parameters are adjusted (within
the limits) so that the FOM is as high as possible, then readjusted so it is as low
as possible. The values of the parameters are not necessarily set at the limits--
the criterion for their value is to make the FOM an extreme. The remoteness of this
condition's occurring in practice depends on the limits which were set by the engineer
at the beginning, on the probability functions of the parameters, and on the number
of systems that are being considered.

One argument in favor of AWC analysis (as opposed to a statistical analysis) is
that many digital electronic systems have so many similar parts, each of which must
have such a high probability of working properly, that a statistical analysis will
for practical purposes turn out to be an AWC analysis, and the AWC is much simpler and
depends on fewer tricky assumptions. The way to make a useful AWC analysis is to set
the limits wisely in the first place and it is here that engineering judgment versus
statistical calculation must come to the fore. Where the importance warrants it and
time and money permit, several such limits should be set up and the calculations

made for each.
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The important thing in the analysis is not naming it (as long as the name is not
misleading) but understanding what you are doing and why. It may be that the reasons
are to satisfy a recipe prescribed in the specification, in which case performing the
calculation by rote is sufficient. But generally the designer will have to ask
himself, "what is it that' I would like to have?", then go ahead and make the calcula-
tions. If all looks reasonable, he can be happy; if it doesn't look reasonable, he
will either have to modify his design, or modify what he would like to have (some-
times the choice between the latter two is not always his).

Computer routines are available for performing these analyses on electronic
circuits. Generally speaking the curve of FOM versus each independent parameter is
assumed to be monotonic and a numerical differentiation is performed at the nominal
values to see in which direction the parameter should be moved to make the FOM high
or low. It is alsoc presumed that this direction is independent of the values of any
of the other parameters as long as they are within their limits. If these assumptions
are not true, a much more detailed analysis of the equations is necessary before
worst-case can be performed. Essentially what it would amount to is that a response
surface for the FOM must be generated for all the parameters involved. It is seldom
that anyone will feel such a complicated analysis is worthwhile.

An interesting modification of worst-case is given in Ref. 8, it is called
"Worst Distribution Analysis'". This is less stringent than the worst case above and

has promise of being an easy, effective calculation.

6.3 Propagation of Probability Distributions Through an Equation

In this section it is presumed that an equation is available in the form y = g(x)
and that the probability density functions (pdf) of all the %, are known exactly. The
most usual parameter that engineers want (perhaps because it is one with which they
are most familiar) is an average or mean. An engineer who has been exposed to the
vagaries of the world (as opposed to the uniformity of textbooks) soon learns that
there is more of interest than an average, that the variations are important, and
therefore he wishes to calculate the standard deviation or variance (a second moment).

*
But even in this situation, for the first two moments, there are not many tractable

There are many measures of "central tendency", the mean (the “center of gravity"
of the population), the median (half the population lies on either side of the median--
without regard to how big or small the values are), and the peak (called a "mode" by
statisticians--it is the most frequently occurring value, e.g., in the Normal distri-
bution it is the mean; in the exponential distribution it is zero!). These measures
are useful only when the distribution has one peak and is not too cockeyed (i.e., skewed).
If it has more than one peak, it is often desirable to try to split it into two parts,
each of which has only one peak (i.e., unimodal).

The variance corresponds to the physical moment of inertia about the center of
gravity.
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combinations of equations and probability-functions. So most often one will have
to resort to approximate methods such as discussed in Sec. 5. Formulas are given in
Appendix F for some tractable sets of equations and probability distributions.

In the more general case pdf(y) is desired; but rarely can any system equation
be handled exactly. Again reference should be made to Appendix F for a listing of
some of the tractable combinations. The opening statement of this section tends to
imply that all x; are statistically independent; otherwise each would not have its
own pdf. If there are statistical dependencies among some of the variables, the
problem becomes very difficult unless the variables are Normal or the combined pdf(x)
is known. The services of a statistician will be virtually indispensible in the
event that statistical dependence must be considered.

Assuming that the variables are statistically independent it is easy enough to
write down the integral according to the formula in Sec. 5. As mentioned there, in
the absence of a fortuitous circumstance wherein the result is tractable (the engineer
sometimes can make his own luck by choosing the appropriate distributions for some
of the variables), the equation cannot be analytically integrated and numerical methods
must be used. One usually resorts to the use of computers. Often the engineer will
not possess the required knowledge of numerical methods and will have to seek help on
that score. He may even have to get assistance on the programming unless he has
access to a computer with special programs designed to make programming extremely
simple.

If ordinary numerical integration does not seem appropriate or feasible, Monte
Carlo methods can be used. They are effective, but often are expensive as well since
they tend to consume a great amount of computer time. If only the very central
region of the pdf is of interest, perhaps as few as 20 or 30 trials will be feasible.
Some general rules of thumb are given in Sec. 5 for determining approximately how
many runs should be made.

An alternate method which is sometimes feasible where the moments of g(x) can
be calculated is to compute successive moments starting with the first and then use
standard statistical methods for fitting ome of the appropriate distributions to
these moments. It is difficult to evaluate how far in the tail region of the pdf
these will be good, but the odds that they are accurate for tail areas less than 1%
are not good; the chances of being accurate for tail areas less than 0.17% are
negligible.

If the pdf (xi) are estimated from small samples, the techniques in the Sec. 6.4

are applicable.
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6.4 Estimation of Parameters of a Distribution

This section is more general than the title might appear since the parameters
of the distributions can be involved in equations and it is the parameters of these
equations that will eventually be estimated by the method. One of the most common
examples is estimating the slope and intercept of a straight line by using the
method of Least Squares. Typical methods which are used are Maximum Likelihood,
Least Squares, Equating of Moments, and Order Statistics. These are detailed in
various statistics texts and general articles and will be only summarized here.

Maximum Likelihood. In this method the probability (for discrete variables)
and pdf's (for continuous variables) must be known for the variables, assuming that
the parameters of the distributions are given.* It is generally presumed that all
observations are statistically independent so that the probability of getting a
given set of observations is the product of the probabilities of getting each
observation. The total probability is called the Likelihood. 1If the parameters of
the distributions must obey some equations, these equations are then inserted
either directly or used as constraints. The ultimate set of parameters is then
adjusted so that the Likelihood expression, written previously, is a maximum. At
this point, equations are easier than words. Suppose that the observations are
denoted by Obs, and the unknown parameters by a,B, ...,y . Then L is a function of
Obs and 0,B, ...,Y » i.e., L = L(Obs,a,B, ...,v). The customary method of finding
a maximum is followed, viz., a set of values of 0,B, ...,y is found, designated by

-

2 ~ Kk
o, B, ...,Y,* such that

AL
oa

_ 3L
~ 3B

0= T e By

where l‘ means evaluated at the ~ conditions.

It is often desirable to have the estimates of the parameters as independent of
each other as possible. This can be done (asymptotically, i.e., the larger the
sample the truer it is) by adjusting the formulation of the equations (e.g., defini-
tions of o,B8, ...,y and the origins of the independent variables) so that

321
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i.e., all the "mixed" second derivatives (parameters only) are zero. It should be

* fThis is the form inm which they usually appear, e.g., the Poisson probability
is p(nfu) = e™M u®/n!. The expression "p(n|u)" is read "the probability of n, given

that p is known."

*% The ~ is called a "circumflex" or simply a "hat'.
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noted that virtually always it is more convenient to deal with the natural log of
the Likelihood rather than the Likelihood itself. If that is done, all of the pro-
ducts are converted to sums and differentiation is much easier. Furthermore, it is
easy to manipulate the equation so that the constant terms (terms which do not
contain the a,B, ...,y) are combined with the 1ln L. They will drop out for all
differentiations anyway and to get rid of them in the beginning is a good way to
keep the problem simple. (That means you won't make as many stupid mistakes in
your work.)

Note the following:

(1) We will maximize L.

(2) (1) is equivalent to maximizing In L.

(3) (2) is equivalent to maximizing -2 = In(L x comnstants) = ln L + constants.

(4) (3) is equivalent to minimizing %£.
The reason for introducing 2, defined in this way is for the simplicity above and to
ease the introduction of the estimated variance of the parameters. It is instructive

to expand 2 about the ~ point in a Taylor's series:

Y 3L 38
v =gl B R BB ..+l By
32g 32g ' 324
s + i T
* Saag|. 2088 F gaay|. Aoy agay|. ABAY
2 2 2.
+1/2§—a§ a2 + g—Bz m’2+...+1/2_72Y1[ 2

+ higher order terms
The terms in first line are each zero by definition of the " point. The terms

in the second line are zero because of the orthogonality condition. The fourth and

last line is presumed negligible. Therefore

aeo= b w24 .esy 2% me,
2 da‘|. 2 3v4|.

and each parameter can be considered by itself. It turns out that, for each para-

N
meter by itself, when A% = %, B2 = est var o, ..., By2 = est var y. (This is

explained in detail in Ref. 9 along with other properties of maximum likelihood.)

est var & means the estimated variance of a, etc.
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Therefore

2 -1 2 -1
est var 4 = E%;% ) s ss.5 @St Var y = E%;% ]

and the uncertainty in a parameter estimate can be taken as the square root of the
estimated variance. The estimates of the variances of the parameter estimates are
asympotically correct.

Example of Maximum Likelihood. Suppose that

y = g(x) + oz
Vi T 84
where g = g(xi)’ oy E.c(xi), z; = ———:ai—‘
(x,y) are a set of independent, dependent variables as is customary
z has a Standard Noxmal distribution
02 is the variance of y.
(xi,yi) is a set of corresponding data. All sets are statistically independent.

Then the probability of z's being between z; and 2 + dzi is

p(zi)dzi =——e dzi

If there are n point sets, the likelihood L is just the product of the probabilities

for each of these point sets (statistical independence was assumed--see- Sec. 2.10):

=
I

n
p(zy)dz; x p(zz)dz2 X .. X p(zn)dfn = qi p(zi)dzi

422 dz_
1 1

v2m

n
=1 e
1

since z is Standard Normal variate.

The X and thus o4 and g; are presumed fixed and exact, so that dyi = cidzi.

The dyi are constants and are tucked out of the way as mentioned above, viz.,

n dy, (v, - 8.)2 *
- _ _1)=£ 2 2y = L i i 2
'3 ln(L/];[i - 0 z (zi + 1n Oi) 2 Z f——jgg———— + 1n oi].
We wished to maximize L, therefore we minimize £ = ~ ln(L/constant). If o; =0 is

a constant then minimizing £ is equivalent to minimizing

n
z implies %i
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2 (yi - gi)2 which is exactly the usual formulation of least-squares. If o5 # con-

stant, note that each square is weighted by 1/0% (the reciprocal of the wvariance)
and that there is a logarithim of the variance added.
Still considering maximum likelihood it is instructive to derive ¢ (assuming o

is a constant).

v = L 2 - 2
L=%50 Z (yi gi) +nlno,

28 _ _ 1 _ 2 .
30 a—fz(yi g0+t
|l _ A2 _ L _ o2 \2 %
3o|. - 9 62 =31 by — 8"

This shows that the Maximum Likelihood estimate for the variance of a Gaussian
distribution is just the sample variance, if o is a comstant. If the data have
been transformed, it is very unlikely that ¢ is a constant.

Least Squares. This technique has merit in its own right regardless of its
connections with Maximum Likelihood and the Normal distribution. From the example

for Maximum Likelihood above,

1 (Yi - gi)z 2
8 =3 Z G_—T;Z—_—— + 1n Gi) . (general case)
i
If oi = g = constant, then (also as in the example above)
% 2
21 = gt Z (yi - gi) +n 1n g2 . (special case)

As far as the parameters in g; are concerned, minimizing £ is equivalent to mini~
mizing Z(yi - gi)z——whence the name "Least Squares”. 1In general ¢ is not a con-
stant and % (general case) is the quantity to be minimized, but the name of Least
Squares is still used. The estimates have some very good properties under special
circumstances of the parameters, regardless of Normality of y - g(x).** For distri-
butions such as the exponential which are highly skewed, the method has little

value. If g(x) is not linear or o = o(x), the problem is not likely to be tractable.

Then numerical methods must be used to find the parameters.

~

éi implies that all parameters in g; are evaluated at the condition.

** GSee Ref. 10 for further details on Least Squares.
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Example a. Let g(x) = u = constant, o(x) = o = constant. This is the situation

where a constant is estimated by a series of observations.

G; - w2

L = %‘Z ('—1;7—— + 2 1n c)

32 1 ~ 1 ~ l ~
0=x ='§3'Z(yi—u)2+Z§, °r62=gz(y““)2
o] _ 1 Ay _ 1
0=4% =571 Gy - D, or i =<0y
392¢ 82e] _ m 922| _ 2n
dudc|. ’ Buz N 32 ° 362|. 62
- 52 A 5
est var (u) = %— , est var (8) = %; ,where "est var'" stands for "estimated

variance of'". This says that the least squares estimate of a group of data which
measure a constant is the sample average and that the standard deviation (s.d.)
estimate is the sample s.d. Note especially that 82 is biased. It can be converted,
if it is worth it, to an unbiased estimate by the usual techniques (see Sec. 2.11

for a discussion of this point).

Example b. Let g(x) = mx, o(x) = kx. This is a straight line through the

origin with a constant "percentage-accuracy" for y, viz., o(x)/g(x) = k/m.

_ 2
(y; mxi)

1
2-22———1;2;?——' +211’1kxi
i
Let 22 -2 = 0 . Evaluate Cht? and note that it is zero; therefore the
omj . ok} amdki . ’

estimates of m and k are asymptotically independent.

It is easily shown that

2 21
~ i Y4 ~ 1 Y3 Y. 2
a=sls, k=3{]GE)-n(15)2
1 1 1

est var m = k?/n, est var k = k2/2n .

Equating of Moments. The sample moments are calculated beginning with the
first. The number so calculated should be the same as the number of unknown
parameters in the distribution. The analytic expressions for the moments of the

distribution are also calculated. Corresponding sample and distribution moments
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are equated and the equations are solved for the parameter estimates. Usually the
equations are not tractable and complicated numerical methods for solving all equa-
tions simultaneously must be used.

The Pearson System of curves which contain several arbitrary parameters are
well suited to the Equations of Moments. Ref. 11 contains a brief discussion of the
actual procedures and gives references to more complete treatments.

It is difficult to estimate the uncertainties which are incorporated into the
answers by the Equating of Moments and so this technique is best left alone when
samples are small and the uncertainties will be large.

Order Statistics. This technique is especially valuable when observations are
left off of either or both ends. (Truncation and censoring are technical words used
to describe these omissions.) There is no general method for applying it since
simulation seems to be one of the main ways in which the necessary data are generated
for use in forming the rules. Ref.l2 is reasonably up to date, but the current
literature--including Government Reports—-contains much useful information. A
statistician who has this as a specialty will be a big help in using it.

At times, this method is mixed with others, especially regarding the estimation
of the "guarantee period"* for some distributions. For example, the smallest obser-
vation is an estimate of the guarantee period and is not infrequently used as such.

When no simple distribution is assumed, the cumulative distribution can be
estimated by equating the sample cumulative distribution to the actual one at the
sample points. This is where plotting position comes in (for the i-th point what
probability should be used?). An easy value to use for the i-th point out of n is
i/n+l; this is the expected value. There are many others offered in the literature,
but don't forget this admonition:

The uncertainties involved in the prediction are usually much greater than

differences among plotting positions.

Therefore if you think the exact formula for plotting position is critical, you have
problems which will not be solved by choosing a better plotting position (in other
words, your troubles are for psychiatrists, not statisticians.) The figures in

Sec. 5.4 show the variations which can easily happen.

Graphing. One of the common engineering methods for estimating a probability
distribution is to plot the cumulative distribution function (cdf) on special graph
paper such that the analytic cdf is a straight line. Weibull paper, semi-log paper

-2 .
(for the exponential) and Normal’ paper are the only ones in common usage. Normal

See Appendix G.

o Often Normal paper is called Probability paper as if it were the only kind

that existed; that is poor practice.
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paper is available with a log10 scale for the other coordinate for use with log
Normal distributions. The figures in Sec. 5.4 show the scatter that readily
occurs with this method; so for small samples, plotting as a straight or curved
line doesn't prove anything. This method does not allow the easy estimation of
uncertainties and so is disadvantaged.

It is tempting to calculate by means of Least Squares the equation for this
line--Resist It! Least Squares requires statistically independent points. The
ones on a cdf are not statistically independent, because they are ordered. That
is, given the second point, you know something about the third one, viz., it is
above the second. Since one point gave you knowledge about the other, they cannot
be statistically independent (see Sec. 2.10). Some work has been done with order
statistics to overcome this problem, but the results are not generally applicable.

Goodness of Fit. After fitting a distribution to a set of data, it is cus-
tomary to see how good the fit is. TFirst of all, you have to decide on criteria
for goodness of fit. Are you going to use an engineering or statistical criterion?
The big difficulty with statistical criteria is their very nature. The question a
statistical test answers is: What are the chances of picking some sample from the
assumed distribution and having that sample more oddball than your sample? If
there are only a few points, the chances are pretty good that any sample is oddball
(see figures in Sec. 5.4). This is known as the test's having low discriminating
ability (called "power" in statistics). If there are a great many points, the
chances are rare that any sample from the assumed distribution will be as oddball
as your actual data. In this case, the test has too high a discriminating ability.
But the question the engineer usually wants to have answered is: If I go ahead
and assume a distribution, will I be too far off in my calculations? And this
question can't be directly answered. Calculation of uncertainties for parameter
estimates, and consequent uncertainties in calculations using them, are one way of
putting a lower bound on the possible errors. Plotting the cdf on appropriate
paper (so the cdf is a straight line) can also show a lower bound on potential
errors. If getting the proper distribution is quite critical, it pays to try
several and to see what effect the different ones have on the prediction.

Two statistical tests in common use are Chi-Square and Kolmogorov-Smirnoff.
The Chi-Square test compares the actual number of observations in an interval with
the predicted number. It combines these comparisons for all intervals and the
resulting statistic has a Chi-Square distribution with parameter somewhat less than
the number of intervals. It is explained in detail in many statistics texts, but

generally has low discriminating ability for reasonable sample sizes.
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The Kolmogorov-Smirnoff test checks on the maximum deviation of the actual .cdf
from the predicted cdf. The tables for use with it are distribution-free; so the
test lends itself well to graphical methods. For that reason it is becoming more
widely used by engineers. It is explained and referenced further in Ref. 13.

There are other statistical tests, some are peculiar to a distribution, others
are distribution free. A statigtician should be consulted if you want to use these
tests and don't want to become a statistician yourself. Just be sure you have him
explain the principles involved in the test (you need not be concerned about the
details) so that you can judge for yourself what the test answer really tells you.

Difficulties with Discrete Distributions. If the random variable is discrete,
such as- in the Poisson and binomial distributions, estimation of confidence limits
becomes tricky. You can estimate upper and lower bounds for each end point of the
confidence interval. (See Ref.ll for a further discussion of this point) or you can
ignore the problem (it won't go away, but you can ignore it) or you can find a
statistician who has this area as a specialty and find come compromise estimates of

the end points of the confidence interval.

6.5 Calculation Where Extreme Extrapolation Is Necessary.

One of the main difficulties with the calculations involved in Secs. 6.3 and
6.4 above for high reliability purposes is that the region where the calculations
are most certain is the one of least interest to the reliability engineer. The
region of relative certainty, usually near the center of the data, is readily esti-
mated and handled, and the problems readily corrected. The importance of this
central body should not be denigrated, but since it is soon taken care of, the
reliability engineer's attention is directed toward the regions where there are
few data, where the uncertainties are high, and where the probabilities are low.

It is easy at this point to be dazzled by the accuracy of numerical calcula-
tions. For example, if a Weibull distribution is fitted to the data, it can be
extrapolated far, far out into the tail region beyond any data, and calculations
can be precisely made with as many significant figures as tables or computer
routines are available. But this result only tells you what would happen if in fact
the Weibull were an accurate description of the tail region; it does not tell you
that the Weibull distribution is in fact such an accurate description. Most likely,
none of the tractable common distributions are descriptive in the tail regions.

That is unfortunate, but it is nevertheless true. At this point Sec. 5.4 should be
consulted for the unpleasant choices which face the engineer under these

circumstances.
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7. Potential Sources and Uses of Variation Data
Here is twhere the difficulties become even more apparent: no matter whether the

items are purchased or made in-house, there won't be enough data on them.

7.1 Purchased Items

7.1.1 Manufacturer's Data

These should rarely be relied upon in critical applications unless incoming-
inspection tests confirm the data. For example, not all manufacturers check all
devices to see that they fall within the maximum and minimum specifications. Dis-
tributional data are to be particularly suspect because they rarely account explicitly
for:

(1) distribution within a lot,

(2) day-to-day variations, and

(3) wvariations among different lots.

These sources of variability create a much broader distribution for periods of weeks,
months, or years than one gets in a single lot. 1In addition, especially if the item
is stock and standard, the manufacturer may sort the lot prior to its being shipped
to you in order to extract from it a sublot meeting the requirement of some other
customer, For example resistors which have a nominal 10% tolerance may have a large
portion of the central region subtracted from them to meet the requirements of those
who wish a 5% resistor. The resulting distribution could easily have a double peak
and a minimum around zero deviation from nominal.

The published data on properties of metals are in worse shape than those of
electronics. Those who try to reconstruct distributions of strengths or other
properties from one or two points (and these points have only nominal probabilities)
do so at their own peril. A good source for and discussion of metal properties is
Ref.1l4 and associated material issued later.

If the distributional data of the manufacturer are critical and must be relied
upon, it is wise to have an express agreement to that effect with the manufacturer.
Provision must be made for enough sampling of important parameters by either the
manufacturer or the customer to assure conformance.

The state-of-the—art with regard to quality of elements seems to depend on

whether a producer or a consumer of the element under question is doing the discussing.

Producers are naturally much more optimistic; consumers tend to be somewhat pessi-
mistic. Tt is especially unwise to take the manufacturer's maximum and minimum
limits and presume that they are + 3¢ limits from a Normal (Gaussian) distributionm.

For mechanical and electromechanical items such as pumps, motors, and relays the

same cautions hold, especially if one is pushing the state-of-the-art. Anything
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that is difficult to make. is much more likely to be made wrong. What we mean by
state-of-the-art is those elements which are on the borderline between being easy

and difficult to produce.

7.1.2 Acceptance and Receiving Tests

Historical data from acceptance and receiving tests will show how the para-
meters of the elements have been behaving in the past. While it is common practice
to extrapolate from past to future performance, a close watch should be kept on the
data so that violent changes will be signaled as soon as possible. The manufacturer
may shift his process for his own reasons such as product improvement, process simpli-
fication, greater profit, or longer life or it may shift without his knowing it.
Sometimes when he considers he has improved his product, he may have changed it for
the worse for you.

It is common practice to fit tractable distributions such as the Normal directly
to parameter data or to data which have been transformed so that they will fit better.
The logarithm of a datum is a common transformation. Since analyses for reliability
are often concerned with the behavior of these distributions way out in the tails,
it is the fit of a distribution out on the tails that is important. But this is the
region of the curve that is difficult if not impossible to fit from the data. Just
because the data fit a Normal distribution around the middle is no reason at all to
feel that they fit it in the tails. There may be considerable skewing to the right
or to the left and there may be large bumps in the tail regions. Any of these can
cause predictions in the tails to be off by factors from 10 to 104.

These acceptance and receiving tests may give good information on the reversible
effects such as temperature and supply voltage, and can be quite useful in parameter

variations analysis.

7.1.3 Special In-house Tests

Part qualification tests usually assume that variability in parts parameters
(and FOM's) is mnegligible and typically rely on small sample sizes. These tests can
be useful for estimating the magnitude of reversible effects. Also some elements
can be intentionally varied during the qualification tests and the effect on the

system parameters observed directly.

7.1.4 Coordinated Data Facilities
*
Facilities such as IDEP wusually provide extensive amounts of raw data. But

since test conditions vary so widely and so many circumstances are unknown or

See Volume V--Parts for a more extensive discussion of these facilities.
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different from those desired, the raw data can be used only as a rough guide to the
variability of parameters of the elements. In particular, since you don't know who
ran the test, you don't know how well he did it. Some databank facilities are being
festructured; others being built anew to overcome these difficulties; and still

others are dying.

7.1.5 Field Data for Operating Systems
Field data range from excellent to worthless depending on the system and the
people who make it work. Field data will generally be suitable more for qualitative

than quantitative use.

7.1.6 What to Do

Often the engineer will have to use arbitrary distributions or set arbitrary
limits when making.analyses and use the information from the above sources as a
guide. His answers will then be of the form: "If the element parameters vary in
such a way, then the system parameter will vary thusly." It is up to the reader
then to see if he thinks the assumptions were reasonably realistic. Even though
this latter approach is often not explicitly followed it is in effect the practical
outcome of many of the calculations. When it's the best you can do, there's nothing

at all wrong with it,

7.2 Manufactured Items

The major data sources for manufactured items are in-house testing and field
experience data. These are as inclusive as the resources of the company permit and
the attitudes of the company allow. They should not be overlooked. Many of the
same considerations hold as for purchased items, especially when a different plant
in the company makes them or when the department that makes them has different goals
than the user does. One can as readily be done-in by someone inside his company as

by someone outside it.
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8, Summary and Conclusions

Once the concepts involved in parameter variations anmalysis are understood, the
application becomes one of an engineer's deciding what techriques will best serve
his needs. Without understanding the concepts involved, the effective use of this
kind of analysis is virtually dimpossible.

There are many occasions where the full treatment is not feasible because of
budget restraints or because the system requirements are reasonably loose. Before
embarking on an extensive program of parameter variations analysis it is wise for
the engineer to spend a few hours being explicit about the advantages he will get
if the program is successful. This will help in evaluating the desirability and
necessity of such a program. In virtually all cases, try the quick-and-dirty
methods first and go on to the more complicated ones if they are mecessary, rather
than jumping into the more complicated ones right away.

Much of the terminology in the field can be confusing and can lead engineers to
think that they do not understand what needs to be done; whereas virtually all of
the tools are fairly simple. The proliferation of names is unfortunate from this
point of veiw even if understandable from an individual author's point of view.

Perhaps the two most important subsections in this volume are 2.1 (the concept
of a model) and 5.4 (techniques for analyzing mathematical models where extreme
extrapolation is necessary). These are most important because

(1) they are least likely to be understood

(2) this lack of understanding is most likely to cause trouble.
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Appendix A
Derivation of Mean and Variance Errors Due to a Pip on

the Tail of a Normal Distribution

In estimating a true mean or variance from a sample, no matter how large, there
is always an uncertainty in the estimate due to the finite sample size. This
appendix uses that uncertainty and compares it to the change introduced by a small
pip way out on the tail of the distribution. The distribution being analyzed
consists of a Normal* distribution (mean pu, variance 02) with area (weight) of unity
and a pip of area (weight) f << 1 at * ko on the right tail. The prime refers to the
combined distribution.

The mean is found by first moments:

p' x (1 + £) px1l+ (u+ ko) x £

or Ap 3 u' = u = kof/(1 + £f) = kof
The variance is found by second moments:
02 2 ZTQ 2
o' (1 +£f) = (6" +By) x1+ (ko - Au)” x £

2
2 2k 2. .22
o o = (7)) £Q+ 5 0" = Ko

or A02

PONIN ~ ~ *%
If p, n', 02, 0'2 are estimates from a single sample of N, they will have distri-

butions whose standard deviations (sd) are:
sd(R) * sd(n') * o/ N
sd(a'z): oZ/V%N

Now, use the standard deviation as the measure of uncertainty in an estimate.
Then set the uncertainty in the estimate equal to the change due to the pip. At
this point the change can "just'" be detected. A smaller sample with its larger
uncertainty would not detect the changes due to the pip; a larger sample with its

smaller uncertainty could detect those changes due to the pip.

sd(u,n') = Ay, i.e., kof = c/JEI , Np = ke,
sd(6%,5'%= a0”, t.e., Ko = oVIN, , N, =2/’ = N

For k > /5, N2 < N. and the change in variance can be detected before the change in mean.

i

Normality is sufficient in this example, but not always necessary. For the
sample mean, the assumption is not necessary. For the variance, it may not be
necessary since the sample size is so large. In both cases, the sample size is large
enough so that the standard deviation is a good measure of the uncertainty.

%%

The circumflex or "hat"” over a parameter name refers to an estimate from the

data, of that parameter.
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Appendix B

Taylor's Series®

Any reasonably well behaved function can be expanded in a Taylor's series; one
of the obvious criteria being that the function and all needed derivatives be defined
at the point of expansion. Virtually all functions used in engineering analysis
which meet this obvious criterion will be well behaved enough. There are many equi-
valent forms of Taylor's series used in the literature; they revolve around how the
variables are expressed (e.g., x+h, x—xo), if there is a remainder, and if so, how
the remainder is written. The remainder form is used here because it allows estima-
tion of the error when the series is truncated, as it must be in numerical analysis.
The Lagrangian form of the remainder is adopted because it is easy to write, use, and
understand.

For one variable:

£G) = £(x  + h) = £(x ) + hf'(x) + 1/2h2f"(xo) oo+ —ﬁ}— pNe (D (x, + oh) .

N i
B 1.4 (d7f(x)
_Zii!h[ i) X, 1#N
o dx [e)

X =
X + 6h, i=N
o

For two variables:

f(x,y) = f(xo + h, v, + k) = f(xo,yo) + h fx(xo’yo) + k fy(xo’yo)

1.h2 1L,k2 e
+%h? £ (x ,y)) +hk fxy(xo,yo) + Lk fyy(xo,yo) +

N i N-j N
£ h k 2" £(x,v)
[o]

TN PR
3 ITE- 5.3 5 N3y

x_ + 6h
fo}
yo+6k

y

N U i
=7 _iTz (J})hJ i3 (_uzsll)

axd aytTd _{xo,yo; i# N
Xyy =
X, +6h, y_+ 0k; i =N

The notation is described at the end of the appendix.
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A general formula for n variables is:

N n *
) ¥y 3 Bl £ N
£ = £z +h = gi 17 ( gj hy o, ) £ .. o

n
= [exp z hj 'a—;—) f(x) B

=1 k| X=X
The first equation uses the Lagrange form of the remainder (the N~th term is the
remainder) in which it is asserted that there exists at least one 6 such that the
equality.is satisfied. The second equation is a more compact way of writing the
formula and is perhaps easier to remember; it does not use the remainder form. The
nomenclature is quite symbolic; it is interpreted by using the power series expansion
for the exponential and applying it term by term. A similar remark is true where
partial derivative operators Cg;) are raised to a power. Just perform the indicated
algebra, treating the operator as you would any other symbol.

It is important to realize that all the derivatives are evaluated at a particu-
lar point as shown. They do not appear as continuous functions.

A Taylor's series has the advantage of a power series in that it can be dif-
ferentiated term-by-term to get the series for the derivative of a function. It has
a further advantage that the coefficients do not depend on the length of the series.

It is not to be presumed that a Taylor's series expansion is always the best
expansion for an N-1 term expansion of a function. Other methods include expansion
in terms of orthogonal functions such as Fourier series (trigonometric functions),
Hermite polynomials, and Chebyshev polynomials. Each has its advantages. One may
be a "least-squares" solution, another may have its actual error bounded, etc. A
numerical analyst, or equivalent, can be helpful in deciding which expansion to use
if more than the first term is needed. Most of them are equivalent up to the first
term.

Formulas are in existence for the expansion of f(x) about 2 points, but they

are rarely used. See Ref. 15.

Notation:
N
(W) - d f(x)
f (x) =
o] N
dx X=X .
o .
) ) r
expression means evaluate the expression at x = a. F
X=a :
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2f(x )

f
xy(xo’yo) Ixdy —— *
> o’yo
m _ n! - i . -
(m) = T T (o) | binomial coefficient.

x implies XysXos sevs x5 h implies hl’h2’ ey hn;

Xq + h dimplies x4 + hy, x4, + hoy weey x0n+ hn.
There exists at least one 8 (0 < 8 < 1) such that the equations are true.

n n
(g—) f(x) implies 5 £(x)
x 55"
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Appendix C

Mean Value Theorem

The mean value theorem can be considered a special case of a Taylor's series

expansion with the Lagrangian form of the remainder for the series. From Appendix B
*
we have

1 N 3t .
;1T (Lhya) f@ X, > 140
1

f(?'So +h) = i 1 9%y ©

Q~1Z

™

x + 6h, i =N

If N=1, this reduces to the mean value theorem for n dimensions (variables)

£(x, +B) = £(x) +mfy (x +6h) + hy £ (x + 6h)+

+hn £ (}_:O + 6h) ,

where £, = 9f/3x. .
i i

For one dimension (variable) this reduces to the familiar form

f(x0 + h) = f(xo) +h f'(xO + 6h) .

There exists at least one 8 (0 < 8 < 1) such that the equation is true. The
notation x implies x31,X,, «e.X as before. The notation X + b implies xp; + hy,

xp2 + hyy ooy o + hm.
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APPENDIX D

Partial Differentiation

Partial differentiation is no more difficult than ordinary differentiation--
although the former is often more tedious--indeed, they are both essentially the
application of the same set of rules. In partial differentiation, however, some
parameters are sometimes held constant and others not--the trick is to know "which
ones" and "when".

Notation is important here if the situation is at all complicated. The
designation "partial" by itself doesn't mean anything except as the set of variables-
to-be-treated-as-independent is given or easily inferred. In complicated situations
it is better not to leave anything for easy inference. Two notations are commonly
used:

(1) List all the variables-to-be-treated-as-independent with each differentia-

tion.

(2) List only the variables being held constant for this differentiation.
Obviously, the second, plus the variable used for differentiation, is the first.

The notation used in this volume on the basis of simplicity and of ease of writing
is the first, viz., list all the variables-to-be-treated-as-independent.

*
Let £ = f(x) and x = x(s8), the formula for a partial derivative is then

of of 90X,
_k _— Kk % %
9s, i axi 9s,

J g X ] s

The potential complications become more deep when some of the ¥, are identical
to some of the sj and perhaps some of the fk are identical to some sj and/or X,
This can happen when several equations are written to express the relationships
between many parameters. The way to proceed is to be very careful of the notation

and to realize that if y = s, = x,, then 8f/8y|x and Bf/ayls are different both in

1 1
physical meaning and in mathematical formulation.

_f_(z(_) implies fl(_ii) ’ fz(i) 3e ey fm(i)
X implies Xys Xpseres X
s implies S1s SgseeesS

p
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APPENDIX E

Central Limit Theorem

There are many variations of statements of the Central Limit theorem, depending
on how complicated a proof it is desired to use. The stronger statements are less

restrictive on the nature of the variables and usually require more proof. A wording

which is usually sufficient for reliability purposes is the following: If

(1) X (i=1,..., n) are statistically independent variables, each with

variance o?;
i
n n
- 2 _ 2 - -
(2) v, = gi X Sn E: Zi o7 » ¥, = average (expected) value of Yo
1
(3 2z = (y, -3)/S,

(4) No fixed subset of oi forms a substantial part of Si as n becomes large.
Then, in the limit, as n » «: 2_, if it exists, has a Normal distribution with

zero mean and unit variance.
Unfortunately nothing is said in this theorem about how large n must be to

have the distribution close enough to the Normal. It is reasonable to presume that

n must be greater when

(1) one goes further out in the tails of the distribution,

(2) the less Gaussian-like the variables are,

(3) the more accuracy is desired.

It is not difficult to dream up distributions for individual x; which are
pathological enough to cause no end of trouble in the Central Limit theorem, i.e.,
they would require n to be very large before any semblance of Normality is obtained.

Before invoking the Central Limit theorem make sure that it is necessary to an
important argument to do so, and then be very careful about jumping from the theorem
itself to the result for a finite number of variables and way out on the tails of

the distribution.

5 i
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Appendix F

*
Tractable Combinations of pdf's(a)

This list is not complete since what is or is not tractable is a matter of
opinion. Also some rather simple distributions with no convenient formulas are not
included. In all but (1) and (10b) a sufficient condition on the x's is that they
be statistically independent (in (1) and (10b) the variables can be statistically
dependent). While it may not always be a necessary condition, the analysis is too
complicated in most cases for anyone to tell.

The distributions mentioned, along with some of their properties,are given in
Appendix G for convenient reference. The parameters referred to in columns 2 and 3
are those given in Appendix G--other references may use different notation.

(b) (b)

Linear combination of variables Original distribution  Final distribution

(1) y-= Z a X, X, is Normal (Gaussian) 7y is Normal Gaussian)
i
(see Sec. 5.2.1 for
new parameters)

Sum of statistically independent

variables(b)’(c)
(2) m-= Z n, n, is Poisson with m is Poisson with
parameter Z U,
parameter . i
(3a) y = z xi x% is Chi-square with y 1is Chi-square with
parameter v, parameter z vy
(3b) y = Z x2 x; is Standard Normal y is Chi~-square with
parameter v = n
(4a) y = Z X X is Gamma (incom- y is Gamma (incomplete)
plete) with para- with parameters
meters o B Z Ass B
(tb) y = z x; X, is exponential y is Gamma (incomplete)
with parameter A; i.e., with parameters n, A
from (4a),
a; = 1, B =2
(5) y = z X, x; is Cauchy with y is Cauchy with

parameters a,8 parameters a,nf

The notes cited by (a), (b), (¢), etc. are listed at the end of the section.
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Least of statistically

(c)

independent variables

" (6) y = least of X

N v least of X,

Product of statistically

(b) ()

independent variables

(8) y=1 X,

Quotient involving two
statistically independent

variables(c)(e)
9y =—t—
14—+
%2
(10a) vy = xl/x2
X
op) ) y = ;fL --%
2
an@ y - =X
VxZ/v
(a)

n

(b)

(c)

See text above

z implies zi’ I implies ?i
I

Original distribution

x; is Weibull with

parameters s B

X, is exponential with
parameter Ai; i.e.,

from (6), a. = 1/x.,
6 =1 i i

X, is Beta (incomplete)

with parameters
as, bi such that

a; =343 Y by

X, is Gamma (incomplete)

with parameters

a5 B, and ays B

xi is Standard Normal

xi is Standard Normal(f)

x is Standard Normal

x2 is Chi-square with

parameter v

Some of these were adapted from Refs. 16 and 17.
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Final distribution

y is Weibull with
parameters

g 1/8 b
7 @1, 8 |

y is exponential with
parameter Z Xi

y is Beta (incomplete)
with parameters a_ s

] b,

y is Beta (incomplete)
with parameters Oys Oy

y = is Cauchy with
parameters o = 0,
g=1

y is Cauchy with
parameters o = p/e,
B =1

y is Student's t
with parameter v




(&) %2 and x need not come from the same sample. This formula is quite general
and nothing more is meant for restrictions than is shown.

(e In (10b), the variables need not be statistically independent.

(£) The linear correlation coefficient is p, (e¥ =1 - p2).
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Appendix G

Some Probability Distributions(a)
Name pdf(b)(c) cdf (from right)(b)(c) mean(d) variance(d) coef. of domainzof variables
skewness(d) (x’P’X(%)?Z? para-
meters
(a,B,A,V)
2
Normal exp{- %(§§E) },§(zif5 or G(§;£9 ! o2 0 -® <X <o
(Gaussian) V21 © - <y <w
0<og<w
Standard -J;-exp(— x%2) d(x) or G(x) 0 1 0 - ® < x < ®
Normal 27
exponential(f) A exp(~ix) exp (~Ax) 1/x 1/x2 2 0sx<e
0 <A<
() 8 x g~1 < B x B8 1 po 2 2
Weibull & exp{-(3) }, exp{~-() } ol (5 + 1) o2[I(FH1)-T2(5+1) ], (h) 0gx<e
© a o o a B B B !
) 0<o<w
0<B<w»
log Normal change the variable y to x = 1ln y and use the Normal distribution above. This is not the same as taking
y directly as the variable, but in reliability work is usually as good or better. (Log);g y can be used
instead of 1n y if the variance is changed.)
. B a-1 -Bx .
(incomplete) T (Bx) e (i) F%iasxz /g /82 2 0<x<e
G (p) Vo 0<ac<o
amma. 0<g <o
1 o-1 _ g-1 _ ] ofB 2(a—B
(inczgglete) Blo,8) ¥ 7, 1- T8 o+ (0+8) 2 (ot B+1) a+B2 0z xs L
Beta = Il_x(B:a) 0 < B < ®
V_ D)
Chi—square(k) -—Ll——--:l'“——(lg)(z)(;i l)e %X, Q(X2|V) v 2v 1 0<sx2<w
2% 1) vv/8 v = positive imteger

1—-1\,12
r (V)
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Name pdf(b)(c) cdf (from right)(b)(c) mean(d) variance(d) coef. of domain of variables
2 -
skewness(d) (X,P,x(%)?zg para
meters
(Q,B,)\,\))
-1 x-
Cauchy(l) i —-—1'—2- ’ 1 cot (zc_a) (m) (m) (m) - ® < g <®
8 X-0 m B
1+ Gj;ﬂ -~ o< g < ®
0<B <o
Ly 41 o —(sV+s)
Student's t I+ 1+ %fﬁ , Q(t[v) 0 S 2 5 (n) 0 - ® << x<®
/v T (%) v = positive integer
. I () . () .
point probability cumulative sum domain of variables
(n-th term) (from right) (n = integerg and
parameters b (u,p,N)
- n 1
Poisson e %T 1—Q(X2=2u|V=2n>O) u u — 0O<n<w
ﬁ; Q<uy<wm
Binomial(o) (g)pn qN_n Ip(n, N-n+1) Np Npgq a2 0D<nsg< N
YNpq 0<p=1-q<1
—_— N = positive integer
(a) From Refs. 3 and 17. .
(b)

All parameters and variables are presumed real, although this is not always a necessary restriction mathematically.
The basic restriction on the parameters is that both the cdf and pdf exist. The restrictions given here are sufficient, but
may not be necessary.

(e) pdf is probability density function; cdf is cumulative distribution function. Two good sources for definitionms,
explanations, uses, and tabulations are Refs. 3 and 11. The hazard rate is pdf/cdf.

(d) This does not imply that the mean, variance, and skewness coefficients are the best measures of central tendency,
dispersion, and nonsymmetry respectively nor that they are the only functions of interest. Mean is the first moment about
the origin. Variance (square of the standard deviation) is the second moment about the mean. Coefficient of skewness is
the ratio: third-moment-about-the-mean/cube-of-standard-deviation, and is dimensionless. They are useful chiefly for
unimodal distributions and, where skewness is not given, only for reasonably symmetric ones.



(e)

When x 2 0, a "guarantee period" X can be introduced. This results in (a) substituting x-x  for x, (b) adding X

to the mean, (c) changing "0 5 x < =

to "xo S X <
parameter in the functiom.

'y (d) adding - = < X <@ and (e) noting that there is an extra

(0 This is the Weibull distribution with ¢ = 1/A, B = 1, or the (incomplete) Gamma distribution with a = 1, B = A.
(&) There are other equivalent forms. This has the advantage that x and o have the same physical units.

® iy - s 1+ iy - 2@y’

(1). 2 IV, kx?

Tables for I(u,Bx) are rare. But for o = %Y and Bx = kx<, YeD) is Q(x2|V)
) B(a,B) = FF%aisg) is the Beta function.

(k) This is the (incompleéte) Gamma with B = %, o = % , x = x2.

x—a |

B

(m) These involve integrals whose values are "infinite" and thus not defined. It is tempting to point out that o is
the center of symmetry.

(1) This is the Student's t distribution with v =1, t =

(o)
g
(n) For v = 1,2, these involve integrals whose values are "infinite" and thus not defined.
(o) (N) = RE is the binomial coefficient.
n n! (N-n)!
(® I'(a) is the gamma function. TI'(n) = (n-1)! for n a positive integer. TI(a) is reasonably well tabulated for o not
an integer. The Incomplete Gamma distribution is a special case of the Pearson type III distribution.
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